

AFRL-IF-RS-TR-2004-144
Final Technical Report
June 2004

DIVA (DATA INTENSIVE ARCHITECTURE)

USC Information Sciences Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G215, J099

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-144 has been reviewed and is approved for publication

APPROVED: /s/
 CHRISTOPHER J. FLYNN
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2004

3. REPORT TYPE AND DATES COVERED
FINAL Mar 98 – Dec 02

4. TITLE AND SUBTITLE

DIVA (DATA INTENSIVE ARCHITECTURE)

6. AUTHOR(S)
John J. Granacki, Mary Hall, Jeffrey Draper, Jeff LaCoss,
Jacqueline Chame, Tim Barrett, Alvin Despain, Jean-Luc Gaudiot

5. FUNDING NUMBERS
G - F30602-98-2-0180
PE - 62110E, 62301E
PR - G215
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey CA 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRLIF-RS-TR-2004-144

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Christopher J. Flynn/IFTC/(315) 330-3249 Christopher.Flynn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The design, development and implementation of a prototype system of a novel computer architecture based on PIM
(Processing-In-Memory) technology are presented. The simulator and emulator that were used to develop and evaluate
the overall concepts and system are also described. The DIVA system uses PIM-based “smart memories” to improve
the effective processor-memory bandwidth. The DIVA “smart memory” significantly improves the performance of data-
intensive applications over their performance on conventional processor memory systems that suffer from the traditional
performance bottleneck caused by the speed gap between high performance microprocessors and DRAMs (Dynamic
Random Access Memory) used in main memory. The chips developed for DIVA represent the first smart-memory
devices supporting virtual addressing and capable of executing multiple threads of control. DIVA achieves enhanced
performance through multiple mechanisms including both coarse-grain and fine-grain parallelism. The simulation
results for a broad class of applications run on the DIVA simulator and reported in the literature show significant
speedups over conventional processor architectures. Running some of these applications on the prototype hardware
has validated these speedups.

15. NUMBER OF PAGES14. SUBJECT TERMS
Computer Architecture, Data Intensive, Processing-In-Memory, PIM, Memory Bandwidth,
VLSI, Compiler, Memory 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

404

 i

Table of Contents

List of Figures and Tables... iii
1. Executive Summary .. 1
2. Introduction ... 1
3. System Architecture .. 3
4. VLSI Architecture and Implementation.. 5
 4.1 PIM Chip Architecture... 5
 4.1.1 Microarchitecture: The Scalar Processor... 6
 4.1.2 Microarchitecture: The WideWord Processor... 11
 4.2 VLSI Development .. 12
 4.3 Ongoing and Future Work ... 16
5. Compiler………………………………………………………………………………. 17
 5.1 DIVA PIM front-end compiler .. 19
 5.2 DIVA PIM backend compiler.. 20
 5.3 Additional Compiler Research... 21
6. System Simulator .. 21
7. Application Studies ... 22
 7.1 DIS Stressmarks... 22
 7.2 Experimental evaluation .. 25
 7.3 Earlier Application Studies .. 31
8. Emulator .. 32
 8.1 Hardware.. 33
 8.2 Software ... 34
 8.2.1 Linux Driver .. 34
 8.2.2 User Command Program ... 34
 8.2.3 Graphical User Interface.. 35
 8.3 Edge Detect Demonstration .. 36
 8.4 Lessons Learned.. 37
 8.4.1 Nominal Clock Rate Isn’t .. 37
 8.4.2 Partitioning Across FPGAs Is A Hard Problem .. 37
 8.4.3 FPGA Tools Are Not Robust (WideWord Impact) ... 38
 8.4.4 Cycle Accuracy Requires More Clock Cycles .. 39
9. Prototype System Integration ... 39
 9.1 Host Node Board.. 40
 9.2 Host Peripheral I/O .. 40
 9.3 Host Operating System Code.. 40
 9.4 PIM-ulator.. 40
 9.5 Assembler and Linker .. 40
 9.6 PIM Specific Code... 41
 9.7 PIM SO-DIMM.. 41
 9.8 DARPATech Demonstration ... 41
 9.9 Stressmark-on-Chip Verification ... 43
 9.10 Future Work ... 43
10. Publications .. 44

 ii

11. Professional Personnel ... 45
 11.1 Research Area Leaders: ... 45
 11.2 Doctoral students ... 45
 11.3 Masters students... 45
 11.4 Other Collaborators.. 46
12. Results, Conclusions & Technology Transfer ... 46
13. Inventions, or patent disclosures ... 47
14. References .. 47
Appendix A: DIVA PIM Processor ISA .. 50
Appendix B: DIVA PIM Node Architecture... 165
Appendix C: HiDISC Final Report ... 225
List of Acronyms... 266
Related Papers... 267

 iii

List of Figures

Figure 1. DIVA system architecture 3
Figure 2. DIVA PIM chip organization 5
Figure 3. DIVA PIM node architecture 6
Figure 4. Scalar register instruction format 7
Figure 5. Scalar immediate instruction format 7
Figure 6. Scalar datapath and pipeline stages 9
Figure 7. WideWord instruction format 11
Figure 8. Prototype PIM signal summary 13
Figure 9. DIVA PIM prototype chip 14
Figure 10. PIM testbench setup 15
Figure 11. Display of read operation of “cornerturn” output matrix 16
Figure 12. DIVA-specific compiler optimizations 17
Figure 13. DIVA PIM Compiler Technology 19
Figure 14. Summary of 1-PIM performance relative to host 27
Figure 15. Host-only busy and memory stall times for the eight programs 27
Figure 16. Memory stall times of host-only and 1-PIM execution 28
Figure 17. Benefits of WideWord instructions and page-mode memory accesses 30
Figure 18. Speedup on four benchmarks as a function of the number of PIMs 31
Figure 19. Photograph of emulator board 33
Figure 20. Schematic and photograph of emulator board interconnect details 35
Figure 21. Emulator GUI 36
Figure 22. Test image input (left) & Sobel-filtered output image (right) 37
Figure 23. PIM node architecture partitioning across two Xlinx FPGAs 38
Figure 24. Partitioning of clock cycles into microcycles 39
Figure 25. SO-DIMM memory module board. 42
Figure 26. Host node demonstration system 42

List of Tables

Table 1. Summary of the eight benchmark applications 26
Table 2. Emulator Hardware Features 33
Table 3. User control commands 34

 1

1. Executive Summary
The DIVA (Data IntensiVe Architecture) Project has developed a prototype workstation class
system using VLSI PIM (Processor-In-Memory) chips as smart-memory coprocessors to a
conventional microprocessor. These chips represent the first smart memory devices to support
virtual addressing and be capable of executing multiple threads of control. The DIVA PIM VLSI
is fabricated in TSMC 0.18-micron technology. The chip measures 9.8 mm on a side and
contains 55 million transistors.

The successful demonstration of the DIVA prototype system incorporating this chip involved
research in several areas including: System Architecture, Software System Architecture, PIM
Architecture, VLSI Architecture/Implementation, Emulator Architecture/Design and the actual
development of the prototype system hardware and software. These areas involved teams made
up of staff from USC/Information Sciences Institute, the University of Notre Dame, Caltech, the
University of Delaware and AlphaTech, Inc.

The goals of the DIVA Project were to demonstrate the capabilities of PIM technology as smart
memory in a system:

• Exploit the inherent memory bandwidth
o embedded DRAM technology

• Cover a broad range of applications:
o irregular memory accesses (sparse-matrices & pointers)
o image processing and multimedia (streaming computations)

• Evolutionary application migration path
o PIMs also support standard memory accesses
o familiar parallel programming paradigm

• Prototype a workstation-class system
o VLSI PIM chips in standard memory modules

All these goals were met. The projected peak performance on a DIVA system with 32 PIMs is 40
GOPS, with an aggregate memory bandwidth of 160 Gbytes/second. This is more than two
orders of magnitude bandwidth increase over conventional systems meeting the DIS (Data
Intensive Systems) goal. A 35-x speedup on the “cornerturn” benchmark, a matrix transpose
kernel function found in many data intensive DoD applications, was also demonstrated.

The DIVA VLSI PIM developed under the DARPA Data Intensive Systems (DIS) Program is
proving to be effective in ameliorating the processor-memory bottleneck present in most of
today's computing systems. In addition, DIVA PIM technology has been incorporated into the
MONARCH (MOrphable Networked ARCHitecture) Project under the DARPA PCA
(Polymorphous Computer Architecture) Program and Godiva in partnership with Hewlett
Packard on the HPCS (High Productivity Computing System) Program.

2. Introduction
The increasing gap between processor and memory speeds is a well-known problem in computer
architecture, with peak processor performance increasing at a rate of 50-60% per year while
memory access times improve at merely 5-7%. Further, techniques designed to hide memory
latency, such as multithreading and prefetching, actually increase the memory bandwidth

 2

requirements [Burger96]. Recent VLSI technology trends offer a promising solution to bridging
the processor-memory gap: embedded-DRAM technology integrates logic with high-density
memory in a processing-in-memory (PIM) chip. Because PIM internal processors can be directly
connected to the memory banks, the memory bandwidth is dramatically increased (with hundreds
of gigabit/second aggregate bandwidth available on a chip --- up to 2 orders of magnitude over
conventional DRAM). Latency to on-chip logic is also reduced, down to as little as one half that
of a conventional memory system, because internal memory accesses avoid the delays associated
with communicating off chip.

The system described in this report, DIVA (Data IntensiVe Architecture), leverages embedded-
DRAM technology to replace or augment the memory system of a conventional workstation with
“smart memories” capable of very large amounts of processing. System bandwidth limitations
are thus overcome in three ways: (1) tight coupling of a single PIM processor with an on-chip
memory bank; (2) distributing multiple processor memory “nodes” per PIM chip; and, (3)
utilizing a separate chip-to-chip interconnect, for direct communication between nodes on
different chips that bypasses the host system bus. The DIVA system architecture is focused on
achieving the following four goals: (1) developing PIMs that can serve as the only memory in the
system, assuming the dual roles of “smart memories” and conventional memory; (2) supporting a
wide range of familiar programming paradigms, closely related to parallel computing; (3)
targeting applications that are severely impacted by the processor-memory bottlenecks in
conventional systems: sparse-matrix and pointer-based applications with irregular memory
access patterns, and image and video applications with large working sets; and, (4) developing a
VLSI device to exploit memory and communications bandwidth in PIM-based systems while
making efficient use of on-chip resources for target applications. These four goals distinguish
DIVA from other PIM-based architectures.

The integration into a conventional system affords the simultaneous benefits of PIM technology
and a high-performance microprocessor host, yielding high performance for mixed workloads.
Since PIM processors are usually not as sophisticated as state-of-the-art microprocessors due to
on-chip space constraints, systems using PIMs alone in a multiprocessor may sacrifice
performance on uniprocessor computations [Saulsbury96][Kogge94], while SoC (System-on-a-
Chip) solutions (e.g., the IRAM [Patterson97] and the Mitsubishi M32R/D [Mitsubishi99]) limit
the application domain. DIVA’s support for a broad range of familiar parallel programming
paradigms, including task parallelism for irregular computations, distinguishes it from systems
with restricted applicability (such as to SIMD parallelism [Elliot99][Gokhale95][Patterson97]),
as well as systems requiring a novel programming methodology or compiler technology to
configure logic [Babb99], or to manage a complex memory, computation and communication
hierarchy [Kang99]. DIVA’s PIM-to-PIM interconnect improves upon approaches that serialize
communication through the host, which decreases bandwidth by introducing added traffic on the
processor memory bus [Oskin98][Gokhale95].

A major challenge in meeting the above four goals is the integrated system design, which
implements the system architecture and spans the applications, systems software, host-to-
memory interface, memory-to-memory interconnect, PIM software and embedded DRAM VLSI
devices.

 3

The remainder of this report is organized as follows. The next section summarizes the DIVA
system architecture, to set the context for the PIM microarchitecture and other sections that
follow. Section 4 describes the VLSI architecture and implementation in detail. Section 5
presents the compiler optimization, implementation and performance results. Section 6 describes
the DIVA system simulator that supported the applications and architectural development
throughout the DIVA Project. Section 7 sets out the details of how the DIS benchmarks and
stressmarks as well as other application code were used with the simulator to evaluate DIVA’s
performance. Section 8 summarizes our approach to an FPGA (Field Programmable Gate Array)
based emulator and the lessons that we learned in this endeavor. Section 9 presents the system
integration that was required to produce a successful system prototype demonstration at DARPA
Tech 2002. In the remaining sections, we summarize our results, technology transfer,
publications and conclusions.

3. System Architecture
A driving principle of the DIVA system architecture is to efficiently utilize PIM technology in a
way that requires only “evolutionary” software support. This principle demands an approach that
enables integration of PIM features into conventional systems as seamlessly as possible.
Therefore, DIVA chips will be packaged as conventional memory modules. Inserted onto a
conventional microprocessor motherboard, the memory on the DIVA chips is accessed by the
host microprocessor as if it were conventional memory.

In Figure 1, we show a small set of PIMs connected to a single external host processor through a
host-memory interface. The PIM chips communicate through separate PIM-to-PIM channels.

Figure 1. DIVA system architecture

This separate memory-to-memory interconnect enables communication between memories
without involving the host processor.

Spawning computation, gathering results, synchronizing activity, or simply accessing non-local
data is accomplished via parcels. A parcel is closely related to an active message as it is a
relatively lightweight communication mechanism containing a reference to a function to be
invoked when the parcel is received [vonEicken92]. Parcels are distinguished from active
messages in that the destination of a parcel is an object in memory, not a specific processor.

Parcels are transmitted through a separate PIM-to-PIM interconnect to enable communication
without interfering with host-memory traffic. This interconnect must be amenable to the dense
packing requirement of memory devices and allow the addition or removal of devices from the
system. For system sizes of the scale expected for DIVA (on the order of 32 PIM chips), this

 4

combination of requirements favors a one dimensional network [Kang00]. Future generations of
DIVA-like systems that contain large numbers of PIM chips will require a more complex
interconnection network and are the topic of future research.

Parcels, application code, and data contain virtual addresses. To translate these addresses without
the overhead of maintaining conventional page tables at each node, we classify DIVA memory
according to usage [Hall99]: (1) global memory visible to the host and PIM nodes; (2) dumb
memory allocated as conventional pages in a host application's virtual space and untouched by
PIM node processing; and, (3) local memory used exclusively by PIM node routines. To
condense translation information, rather than page tables, we use segments, each of which is
defined by segment registers which are used by the node address translation unit as discussed
below.

The primary functions of the node address translation unit are to translate virtual addresses to
physical addresses for those accesses, which are locally resident, and to provide access
protection. The types of accesses generated by a DIVA PIM processor that require translation
include instruction fetches and data accesses to memory or memory-mapped devices such as
parcel buffers, generated by load or store instructions.

Given the simplicity of the address translation scheme, very little hardware support is needed to
effect efficient translation. A segment base address register and limit register is needed for each
of the eight local segments. Also, one virtual base, limit, and physical base register are needed
for each resident global segment. The initial DIVA architecture provides four sets of global
segment registers, although alternative architectures could provide more. The address translation
unit contains no direct support for home node translation, although the preferred system
programming is such that the global segments resident on a node form the portion of global
memory for which that node is the home node. If this is not the case, address faults invoke
system software, which performs the home node translation.

In addition to local segments, a node maintains translation information for its portion of global
memory. Remote addresses are translated via the concept of a home node, which is guaranteed to
have the translation [Saulsbury95]. Thus, each node's portion of global memory includes objects
for which it is the home node. The major advantages of this approach are that translation may be
accomplished rapidly, and translation information on each PIM scales well.

Memory management functionality is distributed among the host's standard operating system,
augmented with support for PIMs, and run-time kernels on each PIM processor. Unlike standard
multiprocessor systems, the host, which has a system-level view, remains a central figure in
system-level scheduling, disk I/O operations, and memory management. The PIM run-time
kernel must collaborate with the host on system-level operations, such as loading PIM programs
and data, memory management of PIM-visible segments, and PIM context switches between
different user programs. The challenge in this collaboration is that there are really two views of
memory that must be maintained. For dumb pages and for disk I/O of PIM-visible segments, the
host sees memory as standard 4Kbyte pages; the PIM run-time kernel instead views PIM-visible
memory as variable-sized segments [Hall00].

 5

4. VLSI Architecture and Implementation
The goal of the VLSI development on the DIVA project was to produce a prototype chip that
demonstrated the enormous bandwidth available between memory blocks and processing
subcomponents on a processing-in-memory (PIM) device. As the following sections discuss, the
DIVA project was very successful with its VLSI demonstrations and was the first effort under
the Data-Intensive Systems (DIS) program to deliver working silicon. The bulk of this effort can
be categorized into chip-level architecture research and VLSI implementation.

4.1 PIM Chip Architecture
Each DIVA PIM chip is a VLSI memory device augmented with general-purpose computing and
networking/communication hardware. Although a PIM may consist of multiple nodes, each of
which are primarily comprised of a few megabytes of memory and a node processor, Figure 2
shows a PIM with a single node, which reflects the focus of the research that was conducted on
the DIVA project. Nodes on a PIM chip share a single PIM Routing Component (PiRC) and a
host interface. The PiRC is responsible for routing parcels on and off chip. The host interface
implements the JEDEC standard SDRAM (Synchronous Dynamic Random Access Memory)
protocol so that memory accesses as well as parcel activity initiated by the host appear as
conventional memory accesses from the host perspective. More details of the PiRC can be found
in [Kang00] and more information on the host interface is given in [Draper02a].

Figure 2 also shows two interconnects that span a PIM chip for information flow between nodes,
the host interface, and the PiRC. Each interconnect is distinguished by the type of information it
carries. The PIM memory bus is used for conventional memory accesses from the host processor.
The parcel interconnect allows parcels to transit between the host interface, the nodes, and the
PiRC. Within the host interface, a parcel buffer (PBUF) is a buffer that is memory-mapped into
the host processor's address space, permitting application-level communication through parcels.
Each PIM node also has a PBUF, memory-mapped into the node's local address space. More
information on the PBUF design is found in Appendix A2: DIVA Node Architecture manual.

Figure 2. DIVA PIM chip organization

Figure 3 shows the major control and data connections within a node, with the 256-bit memory
data bus as the centerpiece. The DIVA PIM node processing logic supports single-issue, in-order
execution, with 32-bit instructions and 32-bit addresses. There are two datapaths whose actions
are coordinated by a single execution control unit: a scalar datapath that performs sequential

 6

operations on 32-bit operands, and a WideWord datapath that performs fine-grain parallel
operations on 256-bit operands. Both datapaths execute from a single instruction stream under
the control of a single 5-stage DLX (Deluxe)-like pipeline. The instruction set has been designed
so both datapaths can, for the most part, use the same opcodes and condition codes, generating a
large functional overlap.

Figure 3. DIVA PIM node architecture

Each datapath has its own independent general-purpose register file, 32 32-bit registers for the
scalar datapath and 32 256-bit registers for the WideWord datapath, but special instructions
permit direct transfers between datapaths without going through memory. Although not
supported in the initial DIVA prototype, floating-point extensions to the WideWord datapath will
be provided in future implementations. The memory arbiter/controller is responsible for
generating proper control signals to the memory macro. Its functions include initiating refresh
cycles as needed and arbitrating between the host memory port and the execution control unit for
access to the memory macro. Furthermore, it tracks and maintains an open row in the DRAM
macro to enable page-mode accesses as often as possible. Another key component of each PIM
node is an instruction cache, which was included in the DIVA design to keep instruction accesses
to the memory macro from interfering with data accesses as much as possible. Each node also
contains a parcel buffer (PBUF), as described earlier. The following sections briefly discuss the
scalar and WideWord subcomponents, highlighting some of the more notable features. More
detail on these microarchitectures as well as those of other subcomponents of the DIVA PIM
chip can be found in the Appendices.

4.1.1 Microarchitecture: The Scalar Processor
As noted earlier, the combination of the execution control unit and scalar datapath is a standard
RISC processor and serves as the DIVA scalar processor, or microcontroller. It coordinates all
activity within a DIVA PIM node. This section details the microarchitecture of this component
by first presenting an overview of the instruction set architecture, followed by a description of
the pipeline and discussion of special features. More detail of the instruction set can be found in
Appendix A1: DIVA Instruction Set Manual.

Instruction set architecture overview

 7

Much like the Hennessy and Patterson DLX architecture, most DIVA scalar instructions use a
three-operand format to specify two source-registers and a destination register, as shown in
Figure 4. For these types of instructions, the opcode generally denotes a class of operations, such
as arithmetic, and the function denotes a specific operation, such as add. The C bit indicates
whether the operation performed by the instruction execution updates condition codes. In lieu of
a second source register, a 16-bit immediate value may be specified, as shown in Figure 5. The
scalar instruction set includes the typical arithmetic functions add, subtract, multiply, and divide;
logical functions AND, OR, NOT, and XOR; and logical/arithmetic shift operations. In addition,
there are a number of special instructions, described in Special Features section below.
Load/store instructions adhere to the immediate format, where the address for the memory
operation is formed by the addition of an immediate value to the contents of rA, which serves as
a base address. The DIVA scalar processor does not support a base-plus-register addressing
mode because such a mode requires an extra read port on the register file for store operations.

Figure 5. Scalar immediate instruction format

Branch instructions use a different format. The branch target address may be PCrelative, useful
for relocatable code, or calculated using a base register combined with an offset, useful with
table-based branch targets. In both formats, the offset is in units of instruction words, or 4 bytes.
By specifying the offset in instruction words, rather than bytes, a larger branch window results.
To support function calls, the branch instruction format also includes a bit for specifying linkage,
that is, whether a return instruction address should be saved in R31. The branch format also
includes a 3-bit condition field to specify one of eight branch conditions: always, equal, not
equal, less than, less than or equal, greater than, greater than or equal, or overflow.

Pipeline description and associated hazards
A high-level schematic of the pipeline execution control unit and scalar datapath is shown in
Figure 6. The pipeline is a standard DLX-like 5-stage pipeline, with the following stages: (1)
instruction fetch; (2) decode and register read; (3) execute; (4) memory; and, (5) write-back.
Figure 6 indicates these five stages with respect to the data-path registers and also indicates the
write-back and bypass datapaths. The pipeline controller contains the necessary logic to handle
data, control, and structural hazards. Data hazards occur when there are read-after-write register

 8

dependences between instructions that co-exist in the pipeline. The controller and datapath
contain the necessary forwarding, or bypass, logic to allow pipeline execution to proceed without
stalling in most data dependence cases. The only exception to this generality involves the load
instruction, where a "bubble" must be inserted between the load instruction and an immediately
following instruction that uses the load target register as one of its source operands.

Control hazards occur for branch instructions. Unlike the DLX architecture, which uses explicit
comparison instructions and testing of a general-purpose register value for branching decisions,
the DIVA design incorporates condition codes that may be updated by most arithmetic/logical
instructions. The condition codes used for branching decisions are:

• EQ - set if the result is zero
• LT - set if the result is negative
• GT - set if the result is positive
• OV - set if the operation overflows

The DIVA pipeline design imposes a 1-delay slot branch, so that the instruction following a
branch instruction is always executed. Since branches are always resolved within the second
stage of the pipeline, no stalls or bubbles are associated with branch instructions.

Since the general-purpose register file contains 2 read ports and 1 write port, it may sustain two
operand reads and 1 result write every clock cycle; thus, the register file design introduces no
structural hazards. The only structural hazard that impacts the pipeline operation is the node
memory. Pipeline stalls may occur in the instruction fetch stage if an instruction cache miss
occurs. The pipeline will resume once the cache fill memory request has been satisfied. Likewise,
stalls occur any time a load/store instruction reaches the memory stage of the pipeline until the
memory operation is completed.

 9

Figure 6. Scalar datapath and pipeline stages

Special features
The novelty of the DIVA scalar processor lies in the special features that support DIVA-specific
functions. Although by no means exhaustive, this section highlights some of the more notable
capabilities.

Run-time Kernel Support
The execution control unit supports supervisor and user modes of processing and also maintains
a number of special-purpose and protected registers for support of exception handling, address
translation, and general OS (Operating System) services. Exceptions, arising from execution of
node instructions, and interrupts, from other sources such as an internal timer or external
component like the PBUF, are handled by a common mechanism.

The exception-handling scheme for DIVA has a modest hardware requirement, exporting much
of the complexity to software, to maintain a flexible implementation platform. It provides an

 10

integrated mechanism for handling hardware and software exception sources and a flexible
priority assignment scheme that minimizes the amount of time that exception recognition is
disabled. While the hardware design allows traditional stack-based exception handlers, it also
supports a non-recursive dispatching scheme that uses DIVA hardware features to allow
preemption of lower priority exception handlers.

The impact of run-time kernel support on the scalar processor design is the addition of a modest
number of special-purpose and protected (or supervisor-level) registers and a non-negligible
amount of complexity added to the pipeline control for entering/exiting exception handling
modes cleanly. When the scalar processor control unit detects an exception, the logic performs a
number of tasks within a single clock cycle to prepare the processor for entering an exception
handler in the next clock cycle.

Those tasks include:

• determining which exception to handle by prioritizing among simultaneously occurring
exceptions,

• setting up shadow registers to capture critical state information, such as the processor
status word register, the instruction address of the faulting instruction, the memory
address if the exception is an address fault, etc,

• configuring the program counter logic to load an exception handler address on the next
clock cycle, and

• setting up the processor status word register to enter supervisor mode with exception
handling temporarily disabled.

Once invoked, the exception handler first stores other pieces of user state and interrogates
various pieces of state hardware to determine how to proceed. Once the exception handler
routine has completed, it restores user state and then executes a return-from-exception instruction,
which copies the shadow register contents back into various state registers to resume processing
at the point before the exception was encountered. If it is impossible to resume previous
processing due to a fatal exception, the run-time kernel exception handler may choose to
terminate the offending process.

Interaction with the WideWord Datapath
There are a number of features in the scalar processor design involving communication with the
WideWord datapath that greatly enhance performance. The path to/from the WideWord datapath
in the execute stage of the pipeline facilitates the exchange of data between the scalar and
WideWord datapaths without going through memory. This capability distinguishes DIVA from
other architectures containing vector units, such as AltiVec. This path also allows scalar register
values to be used to specify WideWord functions, such as indices for selecting subfields within
WideWords and indices into permutation look-up tables. Instead of requiring an immediate value
within a WideWord instruction for specifying such indices, this register-based indexing
capability enables more intelligent, efficient code design.

There are also a couple of instructions that are especially useful for enabling efficient data
mining operations. ELO, encode leftmost one, and CLO, clear leftmost one, are instructions that
generate a 5-bit index corresponding to the bit position of the leftmost one in a 32-bit value and

 11

clear the leftmost one in a 32-bit value, respectively. These instructions are especially useful for
examining the 32-bit WideWord condition code register values, which may be transferred to
scalar general-purpose registers to perform such tests. For instance, with this capability, finding
and processing data items that match a specified key are accomplished in much fewer
instructions than a sequence of bit masking and shifting involved in 32 bit tests, which is
required with conventional processor architectures.

There are some variations of the branch/call instructions that also interact with the WideWord
datapath. The BA (branch on all) instruction specifies that a branch is to be taken if the status of
condition codes within every subfield of the WideWord datapath matches the condition specified
in the BA instruction. The BN (branch on none) instruction specifies that a branch is to be taken
if the status of condition codes within no subfield of the WideWord datapath matches the
condition specified in the BN instruction. With proper code structuring around these instructions,
inverse forms of these branches, such as branch on any or branch on not all, can also be affected.

Miscellaneous Instructions
There are also several other miscellaneous instructions that add some complexity to the
processor design. The probe instruction allows a user to interrogate the address translation logic
to see if a global address is locally mapped. This capability allows users who wish to optimize
code for performance to avoid slow, overhead-laden address translation exceptions. Also, an
instruction cache invalidate instruction allows the supervisor kernel to evict user code from the
cache without invalidating the entire cache and is useful in process termination cleanup
procedures. Lastly, there are versions of load/store instructions that “lock” memory operations,
which are useful for implementing synchronization functions, such as semaphores or barriers.

4.1.2 Microarchitecture: The WideWord Processor
The combination of the execution control unit and WideWord datapath is regarded as the
WideWord Processor. This component enables superword-level parallelism on wide words of
256 bits, similar to multimedia extensions such as MMX and AltiVec. This fine-grain parallelism
offers additional opportunity for exploiting the increased processor-memory bandwidth available
in a PIM. Selective execution, direct transfers to/from other register files, integration with
communication, as well as the ability to access main memory at very low latency, distinguish the
DIVA WideWord capabilities from MMX and AltiVec. This section details the
microarchitecture of this component by first presenting an overview of the instruction set
architecture, followed by a brief description of the pipeline. More detail can be found in
[Draper02a].

WideWord Instruction set architecture

Figure 7. WideWord instruction format

 12

As shown in Figure 7, most DIVA WideWord instructions use a three-operand format to specify
two 256-bit source registers and a 256-bit destination register. The opcode generally denotes a
class of operations, such as arithmetic, and the function denotes a specific operation, such as add
or subtract. The C bit indicates whether the operation performed by the instruction execution
updates condition codes. The W field indicates the operand width, allowing WideWord data to
be treated as a packed array of objects of eight, sixteen, or thirty-two bits in size. This
characteristic means the WideWord ALU (Arithmetic Logic Unit) can be represented as a
number of variable-width parallel ALUs. The P field indicates the participation mode, a form of
selective subfield execution that depends on the state of local and neighboring condition codes.
Under selective execution, only the results corresponding to the subfields that participate in the
computation are written back, or committed, to the instruction's destination register. The
subfields that participate in the conditional execution of a given instruction are derived from the
condition codes or a mask register, plus the instruction's 2-bit participation field.

The WideWord instruction set consists of roughly 30 instructions implementing typical
arithmetic instructions like add, subtract, and multiply; logical functions like AND, OR, NOT,
XOR; and logical/arithmetic shift operations. In addition, there are load/store and transfer
instructions that provide for rich interactions between the scalar and WideWord datapaths.

Some special instructions include permutation, merge, and pack/unpack. The WideWord
permutation network supports fast alignment and reorganization of data in wide registers. The
permutation network enables any 8-bit data field of the source register to be moved into any 8-bit
data field of the destination register. A permutation is specified by a permutation vector, which
contains 32 indices corresponding to the 32 8-bit subfields of a WideWord destination register. A
WideWord permutation instruction selects a permutation vector by either specifying an index
into a small set of hard-wired commonly used permutations or a WideWord register whose
contents are the desired permutation vector. The merge instruction allows a WideWord
destination to be constructed from the intermixing of subfields from two source operands, where
the source for each destination subfield is selected by a condition specified in the instruction.
This merge instruction effects efficient sorting. The pack/unpack instructions allow the
truncation/elevation of data types and are especially useful in pixel processing.

Pipeline description
Identical to and tightly integrated with the scalar pipeline, the pipeline of the WideWord datapath
is a standard DLX-like 5-stage pipeline, with the following stages: (1) instruction fetch; (2)
decode and register read; (3) execute; (4) memory; and, (5) writeback. Data hazards occur when
there are read-after-write register dependences between instructions that co-exist in the pipeline.
The controller and datapath contain the necessary forwarding, or bypass, logic to allow pipeline
execution to proceed without stalling in most data dependence cases. Register forwarding is
complicated somewhat by the participation capability. Participation status must be forwarded
along with each subfield to effect correct forwarding.

4.2 VLSI Development
From a host of potential foundries for fabrication, the selections were quickly narrowed down to
two possible embedded DRAM candidates early in the DIVA project: IBM and TSMC. IBM
clearly had more experience in the embedded DRAM arena, so early efforts in the DIVA VLSI

 13

development task targeted the IBM CMOS7LD 0.25∝m embedded DRAM process, and a scalar
processor test chip was fabricated in HP CMOS14 0.5∝m technology through MOSIS. (The HP
process was used for early prototyping because its logic speed matched that of the IBM process,
and prototypes could be built very cheaply through this route.) A test vehicle on the TSMC
0.25∝m process was also fabricated to gain familiarity with that technology. Although the DIVA
team entered into a research collaboration contract with the Blue Gene team at IBM Watson, the
DIVA project was not granted access to IBM fabrication capability in a timely manner.
Therefore, in the final half of the project, the VLSI development for the integrated PIM
prototype targeted the TSMC 0.18∝m process. This process was introduced with an embedded
DRAM capability, but that capability was later phased out, so the DIVA prototype PIM was
fabricated with SRAM (Synchronous Random Access Memory) as a placeholder for embedded
DRAM.

Figure 8. Prototype PIM signal summary

As part of the core VLSI development task, a new CAD tool flow was installed. To
accommodate rapid design of the PIM chip, we relied heavily on the ability to specify the chip
design with RTL-level VHDL and synthesize this description into a gate-level netlist of standard
cells. The VHDL was optimized and synthesized using Synopsys Design Analyzer, targeting the
Artisan standard cell library for TSMC 0.18∝m technology. The entire chip was placed and
routed, including clock tree routing, with Cadence Silicon Ensemble. Physical verification,
including DRC, LVS, and antennae checking, was performed with Mentor Calibre. Back-
annotated simulation to verify correct operation and timing of the design was performed within
the Cadence Verilog environment.

A description of the external signals of the first prototype PIM chip is shown in Figure 8. There
are primarily two external interfaces: a host interface for implementing the JEDEC SDRAM
standard and the PiRC signals for inter-PIM communication. Additionally, there are signals for
configuring and monitoring the PLL (Phase Locked Loop) clock multiplier, testing the node
SRAMs, and reset and interrupt capabilities.

 14

This prototype chip implements one PIM node (consisting of a 32-bit scalar processor, 256-bit
WideWord Unit, 4Kbyte instruction cache, 8Mbit node SRAM, and node parcel buffer), PIM
routing component (PiRC), and host interface (containing an external SDRAM interface and host
parcel buffer). The design was submitted on August 23, 2001 for fabrication on a TSMC 0.18∝m
generic process offered through MOSIS. The intellectual property used in the chip design is from
three different vendors:

• Artisan
o standard cells for synthesized logic
o pads
o 32-word x 32-bit scalar register file
o 32-word x 256-bit WideWord register file (implemented as two x128 banks)
o 4kbyte SRAM for instruction cache core (implemented as two banks of
o 128 word x 128-bit SRAMs)
o 128 word x 20-bit SRAM for instruction cache tags

• Virage Logic
o 8 Mbit SRAM (with redundancy to allow repair) (implemented as two banks of

32768 words x 128 bits)
o fuse boxes for the configuration of the SRAM

• NurLogic
o PLL for clock multiplication and deskewing

The resulting chip is 9.8mm on a side and contains approximately 200,000 placeable objects,
where a placeable object is anything from a 2-transistor inverter to a 4 Mbit SRAM macro. The
chip contains approximately 55 million transistors, with 2 million in the logic and smaller
SRAMs and 53 million in the 8 Mbits of node SRAM. The chip contains 352 pads: 240 signal
I/O, 56 grounds, 28 pad Vdd (3.3V), and 28 core Vdd (1.8V).

The silicon die were received near the end of October 2001, and packaged chips were received
near the end of November 2001. Photos of the die and package are shown in Figure 9. Due to
delays in procurement of test fixtures, full-scale testing did not commence until February 2002.

Figure 9. DIVA PIM prototype chip

The preliminary testing was conducted with the use of a custom-built PCB in an incremental
fashion. First, with all functional units in reset, we applied power and an input clock signal to test
the PLL clock multiplier, IP purchased from NurLogic. The PLL was functional over a wide
range of frequencies, voltages, and all possible configurations of input settings. This verification
proved that we had successfully integrated IP from a 3rd-party vendor into our design flow. We

ova

 15

then proceeded to functional testing with the use of an HP 16702A logic analysis system. Pattern
generator modules were utilized to apply test vectors to the inputs of the chip, and timing/state
capture modules were used to sense the outputs of the chip. A photo of the lab test setup is
shown in Figure 10. The chip was tested for functionality at a testbench speed of 80MHz.

Figure 10. PIM testbench setup

We first verified the operation of the memory access capability of the PIM chip by performing
writes/reads to the internal memory through the host memory interface of the PIM chip. After
verifying normal memory operation for the lowest 64KB region of memory, we proceeded to
PIM processor checkout. The procedure consisted of downloading code through the host
memory interface, releasing the PIM processor from reset to execute the code, and then verifying
correct operation by reading back results through the host memory interface. After confirming
the validity of this debugging approach through a small arbitrary code example, we proceeded to
test the execution of the Cornerturn core loop, which had been coded to exploit novel features of
the DIVA PIM WideWord Unit. Reading the memory locations that contained the output matrix
and verifying that the input matrix had indeed been transposed confirmed successful execution of
the code. (The logic analyzer display showing the start of the transposed matrix is shown in
Figure 11). We then began some speed testing to determine the clock frequency operating range
of the PIM chip. We were able to execute the Cornerturn application at 160MHz while
dissipating only 800mW. Even in this limited test setup, the chip achieved a peak 1.28GOPS (32-
bit ops) and 5.12 GB/s memory bandwidth. After passing these initial tests, the chip was released
to the system integration team where many more results were achieved (refer to the system
integration section for details).

 16

Figure 11. Display of read operation “cornerturn” output matrix

4.3 Ongoing and Future Work
While finishing preparations for testing the first chip, we were also working on the designs of the
address translation unit and floating point capability for the second turn of the chip. The address
translation was completed and integrated into the existing design and validated through
simulation, including exception handling related to address faults within a few months. After
performing some initial sizing estimates, we realized that we would not be able to fit 4 parallel
double-precision floating-point units in our WideWord area budget, so we targeted 8 single-
precision units. As technology continues to scale, future PIMs may revisit the possibility of
WideWord double-precision capability. Each single-precision unit implements the basic floating-
point functions: add, subtract, multiply divide. We used the MIT RAW design as a guideline, but
due to DIVA pipeline constraints were not able to use the RAW design as is. We spent most of
our time on the design of the divider and then optimizing to merge the subcomponents to share
resources that all subcomponents need, such as operand formatting, rounding, and normalization.
We selected a divider design based on a Taylor series expansion approach developed by
Liddicoat at Stanford [Liddicoat02]. This design achieved a fairly high-performance divide
capability while minimizing silicon area. We synthesized the entire FPU (Floating Point Unit)
design, and the resulting post-synthesis area projections indicated an area of 0.32 mm2 for each
single-precision floating-point unit, or a total of approximately 2.5 mm2 for eight such units in
the WideWord datapath.

We re-architected the exception-handling unit to accommodate integration of the exceptions
from the WideWord floating-point units. Each of the eight single-precision floating-point units

 17

of the WideWord datapath reports five types of exceptions: divide by zero, inexact, invalid,
overflow, and underflow. The only inconsistency with the IEEE-754 standard is the underflow
exception, which we use in place of supporting denormalized numbers and arithmetic. We have
combined the overflow and underflow status outputs into one value called precision status so that
the resulting 4 exception types of all 8 single-precision FPUs can be contained in one 32-bit
register. We have defined a new special-purpose register (SPR) in our architecture to capture this
information.

Work is now continuing under separate funding to implement the exception integration and
thereby complete the integration of floating-point capability into the DIVA design. Under the
HPCS-funded Godiva project, a DDR SDRAM interface is also being added to the rev 2 PIM
chip for its insertion into an Itanium2-based HP Long’s peak server.

5. Compiler
We have developed a compiler for the DIVA PIM processor that generates optimized code in the
DIVA ISA. As will be discussed in the context of system integration, the DIVA compiler
backend is based on the Gnu GCC compiler, ported from the PowerPC toolset. GCC is a
commonly used optimizing compiler, but it targets conventional scalar instruction sets. To
support optimizations targeting the unique bandwidth-exploiting features of the DIVA ISA, we
developed front-end compiler technology that performs DIVA-specific optimizations, as
captured in Figure 12.

Figure 12. DIVA-specific compiler optimizations

 18

In Figure 12, the ovals represent the functional units of the DIVA PIM chip. As has been
previously described in the architecture discussion, there are both a 32-bit scalar functional unit
and a separate 256-bit wide functional unit. The shaded rectangles in the figure represent on-chip
storage. There is the DRAM array, which in today’s technology could have up to 32Mbytes,
although in our prototype it is a 1Mbyte SRAM array, as previously described. A 4Kbyte I-cache
holds the instruction stream, so that memory accesses are predominantly focused on the program
data. In addition, there are separate register files associated with each functional unit, a 32-
element, 32-bit scalar register file, and a 32-element, 256-bit wide register file.

The unshaded rectangles in the figure point to our compiler’s targets of optimization. DIVA’s
Wide functional unit has operations similar to a multimedia extension architecture such as the
PowerPC AltiVec, where the data type is larger than a machine word, and can be configured to
perform SIMD parallel operations on different field widths, 8-bit, 16-bit and 32-bit. This type of
fine-grain parallelism is referred to as superword-level parallelism (SLP). Optimizations
targeting SLP are the first priority of our compiler. The second priority relates to the WideWord
register file, which is 1Kbyte of storage very close to the processor, and the fact that our
architecture does not have a data cache. Our target applications that can exploit the bandwidth of
the WideWord datapath could also benefit from the increased bandwidth and lower latency of a
data cache, as compared to accessing from the DRAM array. For this same class of applications,
however, compiler technology can also derive the data access patterns and manage storage
explicitly. For this purpose, we have developed new optimizations in the DIVA compiler to
support compiler-controlled caching in the WideWord register file. Further optimization benefits
are obtained from exploiting spatial locality in the DRAM array. When the application accesses
memory, the latency of a memory access varies depending upon whether the access is nearby the
previous access. The DRAM first selects a page or row (assumed to be 2048 bits) and then a
256-bit or 32-bit column within that row. Accesses to the same row as the previous access are
referred to as pagemode accesses, and have a 3x lower latency than other accesses, which are
said to be in random mode. Our compiler performs optimizations to maximize the number of
memory accesses that are in page mode.

Figure 13 illustrates the components of the DIVA compiler. The DIVA front-end compiler is
based on SUIF, a research compiler infrastructure developed at Stanford University. The SUIF-
based DIVA front end takes as input a C or Fortran program and generates optimized code in
MrC, a C-like language with extensions for superword-level parallelism developed for the
PowerPC AltiVec. The optimized MrC code is the input to the DIVA compiler backend, as
shown in Figure 13.

The DIVA compiler backend is based on a superword-extended AltiVec GCC backend available
from Motorola. The AltiVec GCC backend takes MrC code and generates AltiVec vector
instructions similar to DIVA WideWord instructions. To generate DIVA PIM code, we
integrated the DIVA GCC backend that previously generated DIVA scalar code only with the
AltiVec GCC backend. The final DIVA GCC backend generates code that uses both PIM scalar
and WideWord instructions.

Figure 13 shows the DIVA GCC backend and the AltiVec GCC backend for illustration purposes,
as both take optimized code from the SUIF-based front-end compiler. The AltiVec backend was

 19

a useful tool for testing and tuning optimizations performed by the SUIF-based front-end
compiler during the time the DIVA PIM chip was not yet available for software experiments.

The remainder of this section describes the optimizations performed by our frontend compiler,
the implementation, and performance results.

Figure 13. DIVA PIM Compiler Technology

5.1 DIVA PIM front-end compiler
To develop a DIVA PIM compiler that automatically generates optimized code targeting
superword-level parallelism, we have collaborated with Saman Amarasinghe and Samuel Larsen
at MIT. The initial MIT SUIF-based compiler automatically recognizes SLP and generates
optimized code targeting the PowerPC AltiVec multimedia instructions. The DIVA compiler is
built upon the MIT-SLP implementation and generates code targeting DIVA’s WideWord
instructions.

In addition to superword-level parallelism, the DIVA SUIF-based compiler performs
optimizations for compiler-controlled caching in the wide register file. We developed and
implemented new analyses for identifying temporal and spatial reuse of data in loop nest
computations. Our compiler performs a new optimization called superword replacement,
whereby accesses to superwords in memory are replaced by accesses to temporary registers, so
that the DIVA backend register allocator tries to keep these temporaries in wide registers. This
approach adapts related techniques for exploiting temporal reuse in scalar registers, but must also
account for parallelism and spatial reuse.

fIF-based front-end
compiler

■ sujK'n^uril lociiUlx uirtiiiii/iilions
■ IompiliT'tcmirolled L-aLliini>

 20

The DIVA SUIF-based front-end compiler automatically generates optimized MrC code for six
scientific/multimedia benchmarks: TOMCATV and SWIM from the SPEC'95 benchmark suite,
and the media kernels VMM (vector-matrix multiply), MMM (matrix-matrix multiply), FIR
(Finite Impulse Response Filter) and YUV (RGB to YUV conversion).

We also completed an implementation and experiment in our DIVA compiler to automatically
reorder memory accesses to achieve page-mode memory accesses, rather than random-mode
memory accesses, and thus greatly reduce memory latency. The compiler unrolls inner loops and
reorders memory accesses when there are no data dependencies that prevent doing so, such that
accesses within the same page are performed consecutively. On four of the above benchmarks,
VMM, MMM, YUV and FIR, we observed speedups ranging from 1.25 to 2.19X on the DIVA
simulator, as compared to not performing the reordering of memory accesses. This work has
been reported in two publications [Chame00][Shin02b].

Under DIVA funding, we also began an evaluation of requirements to extend MIT-SLP so that it
can parallelize more programs of interest, such as the DIS Transitive Closure stressmark and
NAS CG. We have identified the need to extend MIT-SLP to support parallelization of
constructs containing conditionals for Transitive Closure, and to optimize movement of data
between scalar and wide register files, since movement between register files is not supported in
the AltiVec.

5.2 DIVA PIM backend compiler
As the AltiVec GCC backend was an experimental and unsupported system, we encountered a
number of challenges in merging the DIVA GCC backend with the AltiVec component.
Determining which GCC patches to integrate and which to omit required a lot of information
gathering and trial-and-error. We successfully completed the integration, and began porting the
AltiVec GCC backend to generate DIVA WideWord code. Under DIVA funding, we
implemented a subset of DIVA WideWord instructions and the GCC backend generated
WideWord code for VMM, a kernel that performs a vector-matrix multiply. The AltiVec version
of the compiler has generated code for many more applications, as discussed in more detail
below.

We have performed extensive experiments with the optimized code generated by our compiler,
for both DIVA and AltiVec. The experiments were performed both in an instruction simulator of
the DIVA ISA and in the PowerPC G4 (with an AltiVec). The optimizations for data reuse in
WideWord registers result in a reduction in scalar memory accesses of over 90% for the four
kernels and over 35% in SWIM and TOMCATV. In addition, we observe a reduction of
WideWord memory accesses of over 50% for three of the four kernels, and over 85% in SWIM
and TOMCATV. These reductions indicate that even more improvement can be expected on
DIVA, where there is no data cache. On the AltiVec, overall we are showing speedups ranging
from 1.7X to 12.3X over scalar execution, with an average of 4.2X. Speedups due to our
compiler optimizations for compiler-controlled caching go from 1.3 to 2.8, with an average of =
2.2, over the MIT-SLP compiler upon which we base our implementation. This work has been
reported in three publications [Chame00][Shin02a] [Shin03].

 21

5.3 Additional Compiler Research
Beyond the node compiler implementation, we planned a long-term strategy for system-level
compilation (i.e., host and multiple PIMs) that is being pursued under separate funding. As was
discussed in the context of the DIVA system architecture, we designed DIVA such that it could
be programmed using conventional solutions from parallel computing, rather than requiring a
programming paradigm specific to DIVA or to PIMs. As a system-level programming strategy,
we have adopted Unified Parallel C (UPC), a relatively new parallel programming language.
UPC was developed as a unification of the best ideas among several research C compilers that
support a global address space, and allow high-level specification of data distribution in an
SPMD (Single Program Multiple Data) abstraction for highend shared-memory, distributed-
shared-memory and even distributed-memory parallel systems. The development of the UPC
language and its implementations has been motivated by DoD interest and support. There are
several commercial UPC compilers, and there are a number of defense applications already
written in UPC. We chose UPC for all these reasons, as well as the fact that we can develop
DIVA target applications that are pointer-based in a C-based language, but cannot in other
parallel programming languages such as, for example, CoArray Fortran.

As part of future work, we are collaborating with Lawrence Berkeley Laboratories and UC
Berkeley to develop a UPC compiler for the DIVA prototype. They have an ongoing UPC
compiler effort, to develop a portable UPC compiler.

6. System Simulator
We developed a simulator of the DIVA system architecture that was used throughout the
duration of the project for several application and architectural studies. Among these studies
were the investigation of performance of data-intensive applications on DIVA, the analysis of
architectural design trade-offs and bottlenecks and studies that evaluated and provided feedback
to the design of the DIVA Instruction Set Architecture (ISA).

The DIVA system simulator (DSIM) uses RSIM (http://rsim.cs.uiuc.edu/rsim) as a framework,
with significant extensions. RSIM is an event-driven simulator that models shared-memory
multiprocessors built with state-of-the-art multiple-issue, out-of-order superscalar processors.
DSIM extensions include a simpler PIM processor with a WideWord unit, the DIVA memory
system, the parcel communication mechanism and the PIM-to-PIM interconnect. DSIM supports
the DIVA PIM ISA.

The DSIM host processor is taken directly from RSIM, as well as the host first and second-level
caches. The host processor architecture is based on the MIPS R10000, which is configured as a
four-issue processor with two integer arithmetic units, two floating-point units and one address
unit. Loads are non-blocking. It has a 32Kbyte L1 and a 1Mbyte L2 cache, both two-way
associative, with access times of 1 and 10 cycles, respectively. Both L1 and L2 caches are
pipelined and support multiple outstanding requests to distinct cache lines.

The host is connected to the DIVA memory system via a split-transaction, 64-bit bus. The
memory system consists of the aggregation of all PIM memories, where each local memory is
visible from both host and local PIM processor. DSIM maintains the current open row of each
memory bank to determine the memory access type (page or random mode) and simulates

 22

arbitration between host and PIM accesses. The memory latencies seen by the host are 52 cycles
for page-mode accesses and 60 cycles for random mode, and include the bus transfer delay, the
memory arbitration time and the DRAM access time (4 and 12 cycles for page and random mode,
respectively). The memory latencies seen by the local PIM processor, including arbitration and
DRAM access times, are 6 and 14 cycles for page- and random-mode accesses, respectively.

DSIM also models the parcel mechanism and the PIM-to-PIM interconnection in detail.
Applications executing on DSIM have direct access to the parcel buffers via parcel handling
functions that perform the writing/reading to/from the memory mapped parcel buffers. These
parcel handling functions are part of DSIM's application library, and support the full set of parcel
buffer status reads, triggering/non-triggering writes to the send parcel buffers and
destructive/nondestructive reads from the receive parcel buffers.

The application library also supports a cache-line-flush function to enforce coherence between
the host caches and PIM memory, and synchronization functions. The functions in the
application library are linked with the application code, and their execution is simulated by
DSIM as part of the application.

The simulator parameters used in our application studies were based on the conservative
assumption that the PIM processor runs at half the speed of the host processor. Although the
inherent speed of the logic is no slower, we make this assumption because the WideWord
register accesses could impact the clock speed.

7. Application Studies
We performed several application studies, using the DIS Stressmark Suite as well as other data-
intensive or high-performance-computing benchmarks, including NAS CG and the template-
matching (TM) component of the Sandia ATR benchmark. We first describe the DIVA
implementations of the DIS stressmarks, then we present experimental results on the stressmarks
and other benchmarks, and later we discuss our earlier application studies.

7.1 DIS Stressmarks
This section contains a description of our implementation of the Cornerturn, Pointer, Transitive
Closure and Neighborhood stressmarks. For each of these stressmarks, we describe how the
stressmark is mapped to DIVA, including computation and data partitioning, host-and-PIM and
PIM-to-PIM communication and synchronization. We also describe how the WideWord unit is
used, when applicable (Pointer and Neighborhood do not use the PIM WideWord unit).

Cornerturn.
The DIVA implementation of Cornerturn performs a hierarchical matrix transpose, where the
matrix is partitioned into blocks and each block is assigned to a PIM node. The transpose of each
block is computed by partitioning the block into sub-blocks, which are then transposed in
WideWord registers using permutation operations. We present below a simplified
implementation, which is valid for square matrices only.

The host performs the initial block partitioning, keeping a table with the assignment of blocks to
PIMs, and coordinates synchronization between host and PIMs. In the first phase of the

 23

computation, each PIM computes the transpose of its local block. After that each pair of PIMs
owning blocks that need to be swapped to form the transposed matrix communicate using the
PIM-to-PIM network.

The local block transpose is performed as a set of transposes of 8x8 sub-blocks (except for block
sizes that are not multiple of the number of matrix elements that fit in a WideWord register). For
the out-of-place transpose, each 8x8 sub-block is loaded into the WideWord register file (an 8x8
matrix with 32-bit elements requiring 8 WideWord registers), and transposed via a sequence of
permutation operations. The transposed sub-block is then stored back in memory at the target
location. In the in-place transpose (of square blocks) two subblocks of size 8x8 are loaded in
WideWord registers, each sub-block is transposed in registers, and then the transposed sub-
blocks are stored back in memory, swapping locations to form the transposed block. This
implementation takes advantage of the large capacity of the WideWord register file, avoiding
loads and stores to memory during the transpose of each 8x8 sub-block.

After computing its local transposed block, each PIM exchanges its transposed block with the
PIM that owns the location of the block in the transposed matrix. For example, for a square
matrix divided into four blocks where block-00 is assigned to PIM-0, block-01 to PIM-1, block-
10 to PIM-2 and block-11 to PIM-3, PIM-1 exchanges its transposed block with PIM-2. PIM-0
and PIM-3 keep their transposed blocks since they should remain in the same location in the
transposed matrix.

The communication phase is performed in 2 steps: in the first step PIMs owning blocks in the
upper triangular sub-matrix send their blocks to PIMs owning blocks in the lower triangular sub-
matrix; the second step completes the exchange of blocks with PIMs in the lower triangular sub-
matrix sending blocks to PIMs in the upper triangular sub-matrix.

Finally, this implementation of Cornerturn avoids contention on the PIM-to-PIM network by
assigning each pair of blocks that will exchange locations in the transposed matrix to neighbor
PIMs. This assignment is based on the fact that communication occurs between fixed pairs of
PIMs, and that when assigning a block to a PIM it is possible to determine the location of its
transposed block in the transposed matrix, and then assign the block corresponding to this
location to the nearest PIM available.

Our HOST version of Cornerturn shows high memory stall times for input sizes that do not fit in
the host L2 cache. This application has very little temporal reuse, since each matrix element is
accessed a few times only during each matrix transpose. Thus primarily spatial reuse is
exploited in cache, and each new cache line is only reused a few times. In the PIM version, the
WideWord datapaths also exploit the available spatial reuse. Furthermore, the WideWord
loads/stores and operations on eight matrix elements at a time also reduce the number of accesses
to memory. Finally, the latency seen by the PIM processor is lower than that suffered by the host
for large input sizes. For example, a 1024x1024 matrix is four times larger than the host L2
cache, resulting in memory stall times corresponding to 98% of the host execution time. On the
other hand, the 1-PIM version spends 40% of the execution time stalled for memory, due to the
lower on-chip latencies and a reduction on the number of memory accesses (the average latency
seen by the PIM is 11.6 cycles, since most of the accesses are in random mode).

 24

Transitive Closure
The implementation of Transitive Closure for DIVA is based on the DIS sample code, and uses a
dense matrix to represent the distance graph. It exploits both fine-grain parallelism, by
performing WideWord arithmetic operations on eight 32-bit elements of the matrix in parallel,
and coarse-grain parallelism, by partitioning the data and computation among PIM nodes.

The host processor computes the matrix partition and coordinates synchronization. Matrices din
and dout are partitioned by rows and a set of consecutive rows is assigned to each PIM node. For
the main loop nest of Transitive Closure, for each iteration of the outer loop k, each PIM node
performs the inner-loop computation (loops i and j) on its local set of rows, using a copy of row k
previously sent by the PIM that owns row k. Therefore, for each iteration of loop k, the PIM node
that owns row k sends a copy of this row to all other PIMs. All PIM nodes synchronize on each
iteration of loop k, after the communication phase.

The multicast of a matrix row from one PIM to all other PIMs is performed using the multicast
mode supported by the DIVA parcel buffer mechanism. The sender processor writes a parcel
payload to the parcel buffer, and then writes a parcel header for each destination PIM. The write
to the parcel header triggers the sending of the parcel to the specified destination. This multicast
mode allows the sender processor to write the parcel payload only once, reducing the cost of
assembling parcels in the parcel buffer.

The local computation on each PIM node takes advantage of the WideWord unit in the
computation of the minimum value of each pair of elements from two matrix rows. Selective
execution using a WideWord operation (wmrgcc) merges the contents of two WideWord
registers according to condition-code bits, allowing an efficient computation of the minimum
value of each pair of elements of two WideWord operands.

Finally, for both the HOST and PIM versions, the inner loops (loops i and j) of the main loop
nest were interchanged, so that the HOST can benefit from spatial locality at the caches, and
PIMs can exploit spatial reuse in WideWord registers.

Our PIM implementation benefits from fine-grain and coarse-grain parallelism, and also from the
higher bandwidths available on chip. For example, the HOST version for input tc05.in spends
65.2% of its execution time stalled due to cache misses, with 11.3% of the misses satisfied at the
L1 and 58.4% satisfied at the L2, resulting in an average memory latency of 6.7 cycles. The 1-
PIM version shows a higher average memory latency (9.5 cycles), but it issues less memory
accesses, since the WideWord unit is used to transfer data to/from memory and perform the
computation. Therefore the 1-PIM memory stall time is smaller than that of the HOST version.
The use of the WideWord unit also results in exploiting spatial reuse, since the matrix is
accessed with stride one in the row dimension.

Pointer
Our implementation of Pointer is based on the sample code provided by Atlantic Aerospace. We
mapped Pointer to DIVA by partitioning both threads and the field array among PIM nodes. To
reduce communication costs, PIM nodes are partitioned into groups so that each group has a
copy of the array; the size of each group is the minimum number of PIM nodes required to keep

 25

one copy of the array. For example, for a 4 MByte array and 16 PIM nodes, and assuming that
each PIM node can keep 2 MBytes of data, the PIMs would be partitioned into 8 groups of 2
PIMs, each group keeping a copy of the array.

Each PIM node is initially assigned a set of threads. Each PIM node starts a thread (from its own
set) and proceeds as follows:

1. When a ``hop" is to a location mapped to the PIM, it computes the median and next hop
as in the original sample code.

2. When a ``hop" is to a location mapped to a remote PIM node, it sends the ``hop"(in a
parcel) to the remote node, which will then continue hoping on this thread.

3. After sending a remote hop out, the PIM checks if it has received any parcels containing
``hops" to be executed locally. If there is a parcel, it goes to step 1.

4. When a thread is completed, the PIM node that executed the last hop marks the thread
``done" and sends a parcel to the PIM that owns that thread signaling that the thread is
done.

Finally, the host processor checks for threads that are done and signals the PIMs when all threads
are done.

In our experiments, the HOST version performs better than the 1-PIM version when the input
size fits in the host L1 or L2 caches (as in p05.in and p20.in). The PIM version performs better
than the host version when the input data set fits in one PIM node and does not fit in the host
cache (such data is not reported since none of the DIS input sizes satisfies this condition). Our
PIM version of Pointer does not speedup when the array must be partitioned among PIMs. The
main reason our Pointer does not scale well is that the rate of communication per hops is very
small, and the local computation (an average of a couple of hops) is not enough to amortize the
cost of PIM-to-PIM communication.

Neighborhood
The Neighborhood implementation on DIVA exploits coarse-grain parallelism by partitioning
the computation among PIM nodes. Each PIM computes a partial histogram locally, and at the
end of the computation phase, the PIM nodes perform a parallel reduction to compute the final
histogram. The parallel reduction takes n-1 steps, where n is the number of PIM nodes. The
communication is scheduled to take advantage of the PIM-to-PIM interconnection topology (bi-
directional ring), avoiding contention in the network.

The 1-PIM version of Neighborhood performs worse than the host version when the image fits in
the host L2 cache, for several reasons: the memory latencies seen by the PIM are larger than the
L2 access time; the PIM nodes operate at half the speed of the host; and our implementation of
Neighborhood does not take advantage of the WideWord unit. When coarse-grain parallelism is
exploited by partitioning the computation among several PIM nodes, the PIM version speeds up
considerably with respect to the host.

7.2 Experimental evaluation
1-PIM performance
To measure the performance potential of the DIVA architecture, we examine in detail eight
benchmark applications, summarized in the Table 1.

 26

Table 1. Summary of the eight benchmark applications

These applications span a broad range of domains including scientific computing, databases and
image processing. They exhibit both coarse grain parallelism (which allows computation to be
spread across PIMs) and, in some cases, fine grain parallelism (which can be exploited through
execution in the WideWord unit). CG, Neighborhood, Pointer, OO7 and Natural Join exhibit
irregular or mixed (regular and irregular) data access patterns, resulting in high memory access
overheads on conventional architectures. Cornerturn, Transitive Closure and Template Matching
are dense matrix computations with regular access patterns, although memory bandwidth
becomes a limiting factor in exploiting the significant available parallelism. These three and CG
rely on the WideWord unit to exploit parallelism and PIM bandwidths. Hereon, we use
abbreviations for each of the program names, with a suffix -H for host and -P for PIM.

 27

The graph in Figure 14 summarizes 1-PIM performance as compared to execution on the
conventional host processor. Five of the eight programs speed up significantly compared against
host execution, two remain about the same, and one program is slowed down. (All programs
speed up when multiple PIMs are used.) Overall, the average speedup is 3.39X.

Figure 14. Summary of 1-PIM performance relative to host

Several factors contribute to these speedups, including the lower memory stall times on the PIM
nodes and the benefits of the WideWord unit in exploiting fine-grain parallelism and taking
advantage of page-mode memory. These factors are discussed in detail in the subsections that
follow.

Reduction in Memory Stall Time
To illustrate the impact of memory latencies on the applications’ total execution times, Figure 15
shows the busy and memory stall components of host only execution. We see from the figure
that five of the eight programs spend more than 40% of their time stalled in memory accesses.

Figure 15. Host-only busy and memory stall times for the eight programs

 28

PIMs reduce memory stall time in two ways: (1) lower latency to memory; and, (2) higher
bandwidth to memory through wide loads and stores. (A third reduction occurs as a result of
coarse-grain parallelism across the PIMs.) DIVA achieves a reduction in memory stall time for
these five programs ranging from 13.89% for Natural Join to 95% for Cornerturn, as shown in
Figure 16.

Figure 16. Memory stall times of host-only and 1-PIM execution

The host version of Template Matching (TM-H) has a memory stall time of only 3% of its total
execution time. The reason is that the data set size fits in the L2 host cache and the working set
of each loop fits in the L1 cache, and therefore the data reuse exhibited by TM is effectively
exploited. Even though TM-H does not suffer from large memory stall times, the 1-PIM version
(TM-P) has even smaller stall times due to the high data bandwidth at the PIM node. The use of
the WideWord unit for loading/storing and operating on 256-bit objects, plus the reuse of data in
WideWord registers reduces the memory stall time to 20% of that of TM-H.

Cornerturn has a memory stall time of 90.17% when running on the host. This application has
very little temporal reuse, since each matrix element is accessed only twice (one read and one
write) during the matrix transpose. Thus primarily spatial reuse is exploited in cache, and each
new cache line is only reused a few times (1 load and 1 store per element, and 8 elements per
cache line) once loaded, and then never used again. In the PIM version, the WideWord datapaths
also exploit the available spatial reuse. Furthermore, the WideWord loads/stores and operations
on 8 matrix elements at a time also reduce the number of accesses to memory.

Finally, the latency seen by the PIM processor (average of 11.57 cycles, since most of the
accesses are in random mode) is much lower than that suffered by the host. The combination of
these factors reduces the CT-P memory stall time to 4.32% of that of CT-H.

CG also benefits from the lower memory latencies on the PIM node. Since the data set size does
not fit in the host caches and the irregular access patterns cause conflict misses, CG-H spends
85.21% of its execution time stalled due to cache misses. Although most of the misses are
satisfied at the L2 cache (51.32%), 46% of the stall time is due to accesses to the DRAM. On the

 29

PIM, 78% of the memory accesses are page-mode accesses, and the average latency seen by the
processor is only 5.91 cycles.

TC-P benefits from both fine-grain parallelism and the higher bandwidths available on chip. TC-
H spends 70% of its execution time stalled due to cache misses, with 47.14% of the misses
satisfied at the L1 and 52.81% satisfied at the L2, resulting in an average miss latency of 6.23
cycles. On the PIM version, the average memory latency is of 5.57 cycles, due to 67% of page-
mode accesses. In addition to lower memory latencies, TC-P also has a smaller number of
memory accesses since the WideWord unit is used to transfer the data to/from memory and
perform the computation. Therefore the memory stall time of TC-P is smaller than that of the
host version. The use of the WideWord unit also results in the added benefit of exploiting spatial
reuse; since the matrix is accessed with stride one in the row dimension.

Neighborhood shows an increase in memory stall time because the data fits in cache, and thus
the memory latency at the PIM is larger than that of the host. This increase in memory stall time
and the fact that the PIM processor runs at half the speed of the host results in a slowdown with
respect to host-only execution.

Pointer has no spatial reuse and little temporal reuse, and since the data set size is larger than the
L2 cache, P-H stalls for memory for 49.8% of its execution time, with most misses satisfied at
the DRAM. P-P has roughly the same number of loads and stores, but the average latency seen
by the PIM is much smaller than the memory latency suffered by the host, even though most of
the PIM accesses are random-mode accesses.

Natural Join has little temporal reuse and high cache miss rates, even though the data set size fits
in the L2 cache. NJ-P shows a reduction of 13.8% in memory stall times due to the lower
average latency seen by the PIM processor. OO7 also has almost no temporal reuse and OO7-H
suffers from a large amount of cache misses. On the PIM version the memory stall time is
reduced by 62.8%, again as a result of the smaller on-chip latency.

Benefits from WideWord Unit and Page Mode Memory Accesses.
To isolate the benefits of the WideWord unit, we compare scalar versions against versions tuned
to take advantage of the WideWord unit and page-mode memory accesses for the four programs
that utilize the wide datapaths. These results are shown in Figure 17. Speedups are significant,
ranging from1.19X for CG up to 17.96X for TM, with an average improvement of 9.93X.

 30

Figure 17. Benefits of WideWord instructions and page-mode memory accesses

CG's key computation is a sparse matrix-vector multiply. Due to the mixed regular/irregular
nature of data accesses, we only exploit fine-grain parallelism in the WideWord unit for the
regular portions of the computation. The dense vector accesses are loaded into WideWord
registers, and the dense vector multiplies are performed in the WideWord floating-point unit.
The accumulates into the sparse matrix are performed sequentially. Selective execution is used to
select the field of the WideWord operand that participates in the operation. Further performance
improvements are obtained by reordering memory accesses, grouping streaming accesses to the
dense arrays to achieve page mode memory access latencies.

The CT implementation performs a hierarchical in-place matrix transpose where the smallest
submatrices, of size 8x8, are transposed in WideWord registers. Each 8x8 submatrix is loaded
into the WideWord register file (an 8x8 matrix with 32-bit elements requiring 8 WideWord
registers), and transposed via a sequence of permutation operations. The transposed submatrix is
then stored back in memory. This implementation takes advantage of the large capacity of the
WideWord register file, avoiding loads and stores to memory during the transpose of each 8x8
submatrix.

TM computes three correlation values between an image and each of 32 templates, each
correlation corresponding to a loop nest. The DIVA implementation, which is described in detail
in [chame00], takes advantage of the inherent fine-grain parallelism by operating on 32 8-bit
image pixels and 32 8-bit template elements at a time. Since a template is represented as a 32-by-
32 matrix of 8-bit elements, an entire template row fits into one WideWord register. Also, since
the innermost loop of each loop nest traverses one template row, the entire inner loop
computation is transformed into a sequence of WideWord operations on one template row and 32
pixels of an image row, therefore eliminating the innermost loop. The accumulation of the pixel
values is achieved by a parallel reduction sum, and the result of the reduction sum is added to the
correlation value using selective execution. To exploit temporal reuse in WideWord registers, we
applied common loop transformations, particularly unroll-and-jam. In addition, we exploited
spatial reuse by shifting an image subrow held in a WideWord register by one pixel, to move the
window of the image to be compared against the template. As in CG, we also reordered memory
accesses to achieve page mode latencies.

 31

TC uses a dense matrix to represent the distance graph. It exploits fine-grain parallelism by
performing WideWord arithmetic operations on eight 32-bit elements of the matrix that are held
in WideWord registers. Selective execution using a WideWord operation (wmrgcc) merges the
contents of two WideWord registers according to condition-code bits, allowing an efficient
computation of the minimum value of each pair of elements of two WideWord operands. Similar
to TM, we use unroll-and-jam to obtain temporal reuse in the WideWord register file.

Overall Speedups
In Figure 18, we present speedups for four benchmarks, using the DIVA system over executing
the applications on the host processor. Our experiments show significant improvements over the
host-only execution for the three DIS stressmarks (Transitive Closure, Cornerturn and
Neighborhood) and NAS CG, with speedups ranging from 19.4X to 39.5X on a 64-node system.
These high speedups are in spite of the fact that the PIM processors are running at half the speed
of the host, and are in-order, single-issue, vs. out-of-order, 4-issue for the host.

Our CG implementation performs a parallel reduction to accumulate partial results computed
locally by each PIM processor. During this parallel reduction phase, a PIM node sends its local
copy of the result array to another PIM node. This transfer of a large amount of data to a same
destination processor is well suited for the streaming mode supported by our parcel mechanism.
In Transitive, there is a communication phase on each iteration of the outermost loop of a 3-deep
loop nest. During this phase, one PIM processor sends its local copy of a matrix row to all other
processors executing the parallel application. This communication pattern can take advantage of
the multicast mechanism supported in DIVA. Similarly, Neighborhood exhibits communication
patterns that can take advantage of the streaming parcel mode.

Figure 18. Speedup on four benchmarks as a function of the number of PIMs

7.3 Earlier Application Studies
At the initial phase of the project, we derived a set of benchmarks that could be used for
evaluation purposes throughout the project. This initial set consisted of six benchmarks selected
from well-known scientific benchmark suites (NAS, Splash-2), pointer-based and database
benchmarks (Sparse from McGill and OO7 from University of Wisconsin), as well as the

 32

template-matching component of Sandia's ATR application, and the Munkres benchmark
provided by Alphatech.

To evaluate the design of the DIVA ISA, we performed experiments using this set of
benchmarks. One of the goals of the experiments was to identify useful permutation patterns for
rearranging data in the PIM wide registers, using the wide unit permutation network. The DIVA
PIM ISA supports efficient permutation operations for a set of frequently used permutation
patterns; this application study identified frequently used permutation patterns, such as data
shifting, reductions, sorting, gather and scatter, which were integrated into the DIVA PIM ISA.

In another experiment, we performed simulations on the template-matching component of
Sandia’s ATR to evaluate the benefits and trade-offs of the WideWord datapaths. Using
WideWord operations for exploiting fine-grain parallelism and data reuse in the WideWord
registers, we obtained a 13x reduction in the number of dynamic instructions and a 300x
reduction in the number of dynamic memory accesses. These improvements led to an overall
speedup of 38.3 on a system with 32 PIMs.

We demonstrated a speedup of 20.6x on the NAS CG benchmark, over execution on a high-end
workstation based on the MIPS R1000. Several architecture features of DIVA contributed to
these speedups: the lower memory latencies on PIM chips, the PIMs wide datapaths for parallel
memory operations and efficient communication, and a WideWord floating-point unit that allows
four double floating-point operations to be performed in parallel. For these experiments, we
modeled in the simulator a WideWord floating-point unit capable of performing four double
precision floating-point operations (our second DIVA chip supports eight single precision
floating-point operations performed in parallel).

We performed an initial mapping of three of the DIS benchmarks (Image Understanding, Ray
Tracing and Method of Moments) to the DIVA architecture, including data and computation
partitioning between host and PIM processors, parallelization (coarse- or fine-grain), and data
locality optimizations. We did not complete our studies of the DIS benchmarks, since soon after
performing the mappings, the DIS stressmarks were introduced and became the benchmark suite
used by all the DIS projects. We subsequently concentrated our resources on experimenting with
the DIS stressmarks. As a result, we did not produce performance results for the benchmarks.
Nevertheless, for archival purposes, we include the most interesting aspects of the mappings here.
We spent the most time on Image Understanding, which has three core computations: a
Morphological Filter that compares a kernel to an image, Region Selection based on results of
filtering, and Feature Extraction that identifies features within the regions. The first of these was
handcoded to use DIVA's WideWord unit. The second, which accounted for only a small amount
of the sequential computation, was performed on the host processor. The third part is executed in
the DIVA PIMs. For Ray Tracing, we obtained good parallel speedups by replicating a small
object database on each PIM and performing the screen pixel computation in a cyclic fashion. If
instead the object database is large and replication is not feasible, the costs of frequent irregular
communication would dominate performance.

8. Emulator

 33

8.1 Hardware
As part of the DIVA architecture development, an FPGA-based emulator was constructed to
provide an early platform for software development and demonstrations. This effort produced
two versions of hardware in response to track developments and requirements emerging from the
primary architecture effort.

The DIVA emulator is a single-board peripheral device designed to plug into a commercial
Linux PC system. It is based on commercial Xilinx Field- Programmable Gate Arrays (FPGAs)
and may be configured to support a wide variety of applications beyond the emulation of DIVA
processors. The emulator is designed to support rapid configuration as a DIVA PIM processor
for executing DIVA programs, however, it is also a general-purpose FPGA engine capable of
supporting a wide range of hardware modeling applications. Table 2 summarizes the hardware
features of the emulator.

Table 2. Emulator Hardware Features

As is shown in Figure 19 of the first version of the DIVA emulator, the emulator circuit is
constructed on two printed circuit boards stacked to form a thin sandwich. The emulator meets
PCI physical size restrictions, even with components mounted on both sides of the two boards.

Figure 19. Photograph of emulator board

■t. ^fSl^tA «

^S^

 34

In addition to the FPGAs, DRAM and SRAM memories, and PCI bus interface ASIC
(Application Specific Integrated Circuit), the main emulator board also contains a small Atmel
microcontroller used for power control and FPGA thermal monitoring, and voltage regulation
circuits to supply the FPGAs with power. The Atmel microcontroller can communicate with the
host system via a “mailbox” in the PCI interface ASIC, enabling the host to issue commands for
power control and clock rate generation. Figure 20 depicts how the emulator board components
are interconnected, and can be used as a guide for partitioning new logic designs so they can best
fit the available resources.

The on-board power regulation circuit delivers 1.8 VDC and 2.5 VDC to the FPGAs and other
on-board devices. The 1.8 V level is used for powering the FPGA internal circuits, while the 2.5
V rail is used to supply power to the input/output pins of the FPGAs, memories, and PCI
interface ASIC.

8.2 Software

8.2.1 Linux Driver
The Linux driver for the emulator is written to be compatible with RedHat Linux v7. The driver
provides interrupt-handling code (not used in DIVA emulations) plus basic services – device
open, read, write, etc. – Required by applications programs such as the user command program.

8.2.2 User Command Program
The emulator user control program is a simple application that provides the user with a simple
set of commands to control the emulator board. Table 3 is a short description of the commands
available to users.

Table 3. User control commands

 35

Figure 20. Schematic and photograph of emulator board interconnect details

8.2.3 Graphical User Interface
Figure 21 shows the user command program display panel. The underlying text-only command
interface has been overlaid by a simple graphical interface that allows the user to control the

 36

operation of the emulator, including single- or multiple-clock execution stepping, and a display
panel to report the contents of registers and memory locations within the emulated processor.

Figure 21. Emulator GUI

8.3 Edge Detect Demonstration
The emulator was used to demonstrate execution of a simple DIVA program for edgedetection
(Sobel filtering) in a small (256x256 pixel) image. While simple in construction, this program
requires the execution of over two million DIVA instructions to complete. The photographs in
Figure 22 are typical of images used in the demonstration, and the corresponding results of edge
detection. Changing the threshold value used to determine the presence of an edge, or light/dark
transition can reduce the amount of “clutter” visible in the result.

 37

In this demonstration, the host system loaded the DIVA PIM program into memory– SRAM – on
the emulator card. The input image was loaded into PIM storage –DRAM – by the host system.
The emulator was directed to run the program, which used the original in PIM storage to
generate results that were placed in another region of DRAM. When execution completed, the
host could read the results directly from PIM storage and display it in a window for viewing. The
edge detect program required approximately one second to execute.

8.4 Lessons Learned
Several valuable lessons were learned during the development of the emulator.

8.4.1 Nominal Clock Rate Isn’t
According to Xilinx, the DIVA emulator was the first design to use the XCV1000 devices. It
soon became apparent that the FPGAs would not support the initial target of 40-megahertz clock
speed – the FPGA wiring resources would not consistently propagate signals. In fact, Xilinx
provided special wiring paths to propagate critical signals over long distances within the FPGA.
Unfortunately, these wiring paths constituted less than ten percent of the available wiring
resources, requiring that every new FPGA design be hand placed and routed for efficiency. As a
result, the nominal clock rate of the emulator was reduced to ten megahertz.

8.4.2 Partitioning Across FPGAs Is A Hard Problem
As the architecture evolved, it became apparent that a PIM processor with a full WideWord
datapath would not fit in a single XCV1000. This forced a large amount of effort to be expended
in partitioning the node across two FPGAs: one for the scalar (32-bit) datapath and the
instruction pipeline, one for the WideWord datapath.

 38

Figure 23 shows how the PIM processor was partitioned across the emulator FPGAs and other
board-level resources. First, while the emulator effort as started at the beginning of the DIVA
effort, the evolving nature of the architecture made it very difficult to anticipate the eventual
logic requirements of the ASIC. The first version of the emulator was built with Virtex
XCV1000 devices, which claimed to deliver a capacity of one million logic gate equivalents. As
DIVA was originally conceived, this would have been more than adequate to configure a full
DIVA PIM processor – indeed; this was the reason four copies of the FPGA/DRAM/SRAM
cluster were implemented on a single board

8.4.3 FPGA Tools Are Not Robust (WideWord Impact)
After the scalar 32-bit processor was demonstrated with the edge-detect program, the WideWord
(256-bit) datapath design was begun. This design was simplified by the fact that the scalar
datapath could be replicated and modified to implement the variable word width features of the
WideWord instructions. This modified datapath was then copied eight times to produce the
WideWord logic. At this point in the design the design tools distributed by the FPGA
manufacturer, Xilinx, broke, and did so in unpredictable ways. Compilation runs would freeze,
abort at random points in the process, or would refuse to begin. Incomplete runs would not
produce any output data, so it was essentially impossible to determine what aspect of the design
was causing the failure.

 39

Although Xilinx responded to some of these errors with additional releases of software, we did
not receive the level of support required to work through these problems. It was decided that the
design of the WideWord unit would have to be further partitioned to get any design to complete.

8.4.4 Cycle Accuracy Requires More Clock Cycles
The basic operating requirement for the emulator was to provide cycle-accurate results. That is,
at the end of every clock cycle, every register should contain correct results. This requirement
enabled the emulator design to be further partitioned so that the WideWord could be represented
by four 64-bit datapaths, each executing the current instruction in one quarter of the pipeline
clock. This partitioning drove the final execution speed of the emulator to 2.5 MHz, which is still
very acceptable when compared to software simulations. Figure 24 depicts the basic pipeline
clock partitioned into eight microcycles.

Figure 24. Partitioning of clock cycles into microcycles

The colored bands illustrate how one pipeline clock can be divided into sixteen microcycles
should the need arise. The emulated DIVA PIM hardware executes WideWord instructions using
eight micro-cycles – four are used for each of the 64-bit operations, the remaining four are used
to guarantee safe data storage in the WideWord register file and to avoid bus conflicts when
making a selection among one of the four 64-bit data fields.

9. Prototype System Integration
The goal of the prototype system was to produce a stable, high bandwidth demonstration
platform for DIVA PIMs. In addition it was to provide an environment in which to debug and
performance monitor the first PIM chips.

The demonstration platform required several areas of effort including:

- Host Node Board
- Host Peripheral IO
- Host Operating System Code
- PIM-ulator
- Assembler & Linker
- PIM-Specific Code
- PIM SO-DIMM

 40

9.1 Host Node Board
A custom PPC 603e based node board was used from funding under the ASNT project. It
contains an MPC106 combination memory controller and host bridge for PCI. Designed at ISI
this allows straightforward modifications to both hardware and firmware for PIM operation.

9.2 Host Peripheral I/O
The host node PCI port provides a method for off-the-shelf subsystems to be used for standard
I/O functions. An expansion CPCI (Compact Peripheral Component Interconnect) chassis and
ethernet, video, scsi, and serial io cards were purchased and checked out with the PPC 603e-
based PCs on hand from the ASNT project.

9.3 Host Operating System Code
Though the host node has only skeleton firmware, it was thought that Linux would be able to
boot when provided with a device tree. That was necessary but not sufficient. Each peripheral
may contain its own custom firmware that must be executed in a delicate interplay with the host
node firmware (either Open Firmware or BIOS compliant) in order to be LINUX (or any other
OS for that matter) bootable. Progress has been made toward hand-executing this interplay, but
in the end the pace was insufficient for the project needs. Per the PIM Specific Code section
below, a small OS called RTEMS was to be used for the PIM and was also pressed into service
for the host node. A port of RTEMS was made to the host node and its skeleton boot firmware
that allowed TTY console communication in a matter of weeks. The port accomplished three
things: provided experience with RTEMS in an easily debugged environment (the host node),
made the host node capable of controlling and performance monitoring the PIM, and finally
provided a reasonable operating system for the development of PIM memory management code.
It was used to great effect in the DARPA Tech 2002 demonstration of the host node and PIM
noted in the summary below.

9.4 PIM-ulator
Concern over both the schedule and functionality of the first PIM chip coupled with the
existence of unique hardware led to the creation of the PIM-ulator. The ASNT Bridge node
hardware contained six powerful FPGA devices that allowed one host node to communicate to
another via external L2 cache cycles. In that way one host node could simulate the PIM
processor and memory while the other acted as a normal host node. This configuration allowed a
path for OS and memory management software and operational interaction between host and a
pseudo-PIM without the real PIM chip.

9.5 Assembler and Linker
Open source tools from the gnu project have been on plan from the project outset. The first
Assembler for DIVA was a port pulled from the MIPs branch of the gnu assembler tree due to
similarities in the Instruction Set Architecture. It was used for the Emulator area of the project
described elsewhere in this document. The port required some 660 unique versions of 94 DIVA
instructions. The assembler and linker saw standalone use in the Emulator and then more
extensive and integrated use as the chip was brought-up and tested.

 41

High-level compiler support was desired for the wide-word chip functionality. The front-end of
the compiler (gcc) was pulled from the PPC branch of the gnu tree due to the availability of PPC
Altivec extensions. From this branch, the backend of the compiler was modified to produce
DIVA assembly mnemonics as input to the assembler. The two worlds of MIPs and PPC collided
as the gcc tool chain was used as a whole. The PPC-based backend was sufficiently incompatible
with the MIPs based assembler to require a port of the MIPs rewrite to the PPC assembler base.
The compiler was then able to work from the DIVA-modified Altivec extension front end,
through the DIVA-modified backend and finally out the DIVAmodified PPC assembler and
linker. This combination has seen much use in conjunction with the PIM hardware and the host
node system.

9.6 PIM Specific Code
The PIM is to have multiple threads operational on the chip under control of the Run- Time
Kernel (RTK). Initially it was to be a custom in-house design, but as the intricacies of coherent
management of memory from the host node side and PIM node side became apparent it was
decided to concentrate on those intricacies and use something off-the-shelf for the bulk of the
less novel details. RTEMS, real-time operating system initially designed for mission critical
guidance and control systems was chosen for its capabilities, small footprint and open-source
status. It was ported and built for the PPC-based host node as mentioned above under Host
Operating System Code.

The memory management code was the target of much effort leading to a paper published in the
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with
Architectural Support for Programming Languages and Operating Systems in November 2000.
The code development of this PIM-specific code was implemented and simulated in a LINUX
environment and is to be ported to RTEMS with only a moderated amount of expected effort.

9.7 PIM SO-DIMM
After the PIM chip passed initial functional test in a test board connected to a logic analyzer, the
design of a system memory board was finished and fabricated. It consisted of two PIM chips on
an SDRAM SO-DIMM form factor memory board. The two chips may be interconnected to each
other or to other PIMs on other memory boards. Logically this interconnection is accomplished
with the Parcel buffer; physically it is with ribbon cables. These memory cards were tested out in
the host node first as common SDRAM memory, addressed with two different chip-selects from
the memory controller. With reliable operation of the memory subsystem the focus turned to
running the Cornerturn stressmark kernel on the chip.

9.8 DARPATech Demonstration
In the spring of 2002 ISI was invited to present a demonstration of DIVA PIM technology at the
DARPATech Symposium at the end of July. It provided an additional goal and focus during
those months. Ten packaged PIM chips were assembled onto five SO-DIMM memory module
boards, one shown in Figure 25.

 42

Figure 25. SO-DIMM memory module board.

Within a week the memory interface to both chips was proven operational. The next business day
the Cornerturn stressmark code that was verified on the PIM test board was running at speed in
the PIM on the SO-DIMM inserted into the host node demonstration system, shown in Figure 26.

Figure 26. Host node demonstration system

Many different aspects of the host node and PIM required attention and could have jeopardized
the demonstration. Memory tests that logged number of and location of last error were written
for the PIM memory to ensure enough good memory space for the code and data. The host node
memory controller required parameters for the new memory since there is no host node Open
Firmware (BIOS). The host node SO-DIMM sockets were replaced with 22.5 degree sockets to
accommodate the oversized wing of the PCB that holds the PIM chips. Small clock and reset
modules were made to provide these functions to the host node when standing alone in a CPCI
cage. A chip reset line which enables operation from a reset vector was also wired to a pin set
aside for such on the memory socket, while the host node CPLD (Complex Programmable Logic
Device) was enhanced with register support of an I/O line wired to that pin for reset control.

 43

The software provided another set of constraints. Our goal became to put the PowerPC host node
into a race with the PIM. RTEMS was used to manage this race on the host and at the same time
use task priorities to ensure full processing time was given to the host. The PIM Cornerturn
application was hand written and hand assembled, while the host Cornerturn was written in C
and automatically compiled and assembled with gcc and gas for the PowerPC with no
optimizations. The resultant assembly code was compared for similarity to the PIM code and was
within a few percent of the same cycle count.

The code and data were loaded through an emulator to both the PowerPC and the PIM memories.
The data size was 32k bytes, 8k 32-bit integer values. This data size was deliberately larger than
the PPC603e 16k byte data cache. Then under control of RTEMS via the PCI serial card the
demonstration was started. The host counted off 1000 iterations of Cornerturn. The PIM was let
run during that time. The PIM performed over 35,000 iterations yielding a 35x speedup. The
clock speed of the 603e was 166 MHz while the PIM was 133 MHz. The numbers illustrate both
the large penalty for cache miss behavior on the host (~13 bus cycles @ 66MHz for 205ns) and
the large benefit of very low-latency (~3 cycles @ 133MHz for 23ns) access to main memory for
the PIM processor.

9.9 Stressmark-on-Chip Verification
Continuing forward, we realized that many parts of the system required verification at once: the
chip, the system interface, the assembler, the compiler backend as well as the compiler. With a
small team and a plan for a second release of the chip with more features, we have adopted a test
strategy of using the DIS Stressmark suite with known inputs and outputs to give maximum
functional coverage with minimum effort. To that end, we have taken the C versions of
Cornerturn and Transitive Closure through the DIVA compiler and assembler. The kernel of the
stressmark is then extracted, setup code and the known input data is appended and the code is run
on the chip. The outputs are then checked against known good output from gcc builds and runs
on a Sparc workstation.

This method has turned up a handful of bugs in several different areas and is proving to be a
viable approach under the limited time constraints.

Recent verification work has shown successful execution of bi-directional message passing,
along with transitive closure, pointer, and 2-pim transitive with integral chip-to-chip
communications.

9.10 Future Work
The integration effort as a whole is still paying dividends. The HPCS project is using the current
system to measure DIVA’s performance on the StreamAdd benchmark and project expected
performance for the HPCS-sponsored Godiva system. The next chip turn incorporates a DDR
interface, mounted on full size DIMM memory cards plugged into a commodity Itanium-based
workstation as a test bench for the larger system concepts.

 44

10. Publications

[Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J.
Brockman, W. Athas, A. Srivastava, J. Shin, J. Park, “Mapping Irregular Computations to DIVA,
a Data-Intensive Architecture,” In Proceedings of SC99, Nov. 1999.

[Chame00] J. Chame, M.W. Hall, and J. Shin, “Compiler Transformations for Exploiting
Bandwidth in PIM-Based Systems,” In Proceedings of Solving the Memory Wall Workshop, held
in conjunction with the International Symposium on Computer Architecture, June 2000.

[Kang00] Chang Woo Kang, Jeff Draper, “A Fast, Simple Router for the Data-Intensive
Architecture (DIVA) System,” Proceedings of the IEEE Midwest Symposium on Circuits and
Systems, August 2000.

[Hall00] M.W. Hall and C. Steele, “Memory Management in PIM-Based Systems,’’ In
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with
Architectural Support for Programming Languages and Operating Systems, Boston, MA, Nov.
2000.

[Draper02a] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C.
Chen, C. W. Kang, I. Kim, G. Daglikoca, “The Architecture of the DIVA Processing-In-Memory
Chip,” In Proceedings of the International Conference on Supercomputing, June, 2002.

[Draper02b] Jeffrey Draper, Jeff Sondeen, Sumit Mediratta, Ihn Kim, “Implementation of a 32-
bit RISC Processor for the Data-Intensive Architecture Processing-In-Memory Chip,”
Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, July 2002.

[Chiueh02] Herming Chiueh, Jeffrey Draper, Sumit Mediratta, Jeff Sondeen, The Address
Translation Unit of the Data-Intensive Architecture (DIVA) System, Proceedings of the 28th
European Solid-State Circuit Conference, September 2002.

[Draper02c] Jeffrey Draper, Jeff Sondeen, Chang Woo Kang, “Implementation of a 256-
bit WideWord Processor for the Data-Intensive Architecture (DIVA) Processing-In-
Memory (PIM) Chip,” Proceedings of the 28th European Solid-State Circuit Conference,
September 2002.

[Shin02a] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword
Register Files for Multimedia Extension Architectures.” In Proceedings of the Parallel
Architectures and Compilation Techniques Conference, Sept. 2002, Selected as distinguished
paper.

[Shin02b] J. Shin, J. Chame and M. W. Hall, “A Compiler Algorithm for Exploiting Page-Mode
Memory Accesses in Embedded-DRAM Devices,'' In Proceedings of the Fourth Workshop on
Media and Stream Processors Workshop, held in conjunction with MICRO '02, November, 2002.
Selected as best student paper.

 45

[Shin03] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword
Register Files for Multimedia Extension Architectures,” Distinguished paper selected from
PACT '02, to appear in Journal of Instruction-Level Parallelism.

11. Professional Personnel

11.1 Research Area Leaders:

• Dr. John J. Granacki, Principal Investigator
• Dr. Mary Hall, Co Principal Investigator
• Dr. Jeffrey Draper, VLSI Team Leader
• Dr. Jacqueline Chame, Simulation and Applications Team Leader
• Mr. Jeffrey LaCoss, Emulator Team Leader
• Mr. Tim Barrett, System Integration Team Leader

11.2 Doctoral students

• Dr. Louis Luh, PhD, May 2000, Thesis Title: High-Speed CMOS Continuous-Time
Switched-Current Sigma-Delta Modulators

• Dr. Herming Chiueh, PhD, Aug 2002, Thesis Title: A Thermal Management Design for
System-on-Chip Circuits and Advanced Computer Systems

• Dr. Yuyu Chang, PhD. September 2002, Thesis Title: CMOS Giga-Hertz Band Filters
with Automatic Tuning Circuitry for Communication Applications

• Joong-Seok Moon, PhD expected Aug 2003
• Jaewook Shin (PIM-specific optimizations, integration of DIVA scalar GCC and

AltiVec-extended GCC, integration of DIVA compiler with MIT-SLP, DIVA
implementations of CornerTurn, Field and NAS CG, DIVA simulator library
implementation components), Phd expected 2004

• Chun Chen (DIVA implementations of Neighborhood stressmark, Image Understanding
and Ray Tracing benchmarks, port of simulator to Condor)

• Hang Shi (DIVA implementations of Transitive stressmark, Method of Moments
benchmark)

• Ruoming Pang (DIVA implementations of Natural Join and OO7 benchmarks)
• Chang Woo Kang, PhD TBD
• Ihn Kim, PhD TBD
• Taek-Jun Kwon, PhD TBD
• Sumit Mediratta, PhD TBD

11.3 Masters students

• Somphol Boonjing (Application Binary Interface for node compiler), MS December 2000
• Sachit Chandra (VLSI) MS expected Aug 2003
• Gokhan Daglikoca (VLSI)
• Prashant Desai (design for assembler, backend compiler, integration with WideWord

instructions), MS December 2000
• Rommel Dongre (GCC scalar backend implementation), MS December 2001

 46

• Yamini Kaur (VLSI)
• Junaid Qazi (VLSI)
• Shyam Sethuram (DIVA simulator implementation components), MS May 2002
• Vijay Srinivasan MS December 2003

11.4 Other Collaborators

• USC/ISI: Mr. Dale Chase, Mr. Jeff Sondeen, Dr. Bill Athas, Dr. Jeff Koller, Dr. Craig
Steele, Mr. Mike Gorman, Dr. Apporv Srivastava, Ms. Diane Delute, Mr. Bert White, Dr.
Pedro Diniz. Mr. Pablo Moissett

• Caltech: Dr. Thomas Sterling, Mr. Daniel Savarese
• University of Notre Dame: Dr. Peter Kogge, Dr. Jay Brockman, Dr. Vincent Freeh, Mr.

Bedros Hanouik, Mr. Richard Murphy, Mr. Rich Kendall, Mr. Alexi Koundraiov, Ms.
Shannon Kuntz, Mr. Jason Zawodny, Mr. Arun Rodrigues, Mr. Edward Kang

• University of Delaware: Dr. Guang Gao, Dr. Kevin Theobald, Mr. Tom Geiger
• AlphaTech: Dr. Mark Luettgen, Dr. Bob Tenney

12. Results, Conclusions & Technology Transfer
The single most important result produced by the DIVA Project is a complete working system
that demonstrates the advantages of PIM technology used as “smart memories”. This is the
proof of concept that “smart memory” can help ameliorate the “memory wall” that limits the
performance of present day memory systems.

This achievement paves the way for further research on systems with heterogeneous memory
systems, that is, PIM and conventional DRAM used together; PIM-based memory hierarchies,
for example, PIM caches; studying and evaluating larger applications problems; namely, those
that cannot be run on a simulator or emulator and combining this technology in new ways or
incorporating it with other technology into new architectures.

Two follow-on research projects have already started to build on the DIVA technology
MONARCH under the DARPA-sponsored Polymorphous Computer Architecture Program and
Godiva under the High Productivity Computing System Program. Perhaps of even greater
significance these new projects are expanding the research and extending the technology in
partnership with large industrial partners. MONARCH is a joint project with the Raytheon
Corporation, a leading defense contractor and Mercury Computing, the largest supplier of
embedded computers to the military. Godiva is a joint project with Hewlett Packard, a major U.S.
computer vendor. Both of these projects represent significant IP transfer from DIVA but also
represent a high possibility for insertion of DIVA technology into real military and commercial
systems.

A “second turn” of the DIVA VLSI funded under the MONARCH Project will also incorporate
floating-point unit into the WideWord unit greatly enhancing DIVA’s applicability to a broader
class of scientific problems.

The DIVA team has briefed many of the research leaders of major U.S. companies like IBM,
Intel, Hewlett Packard and Sun, as well as several venture capitalists that have expressed an
interest in DIVA technology. We have also briefed the Deputy Under Secretary of Defense for

 47

Science and Technology, NSA’s Director of Computing and the DOE’s ASCI Program Manger.
We will continue to inform the decision makers about this technology.

The main issue with the acceptance of PIM and Embedded-DRAM technology is the cost-
performance, that is, does the added cost of combining DRAM on the same chip with the logic
processing warrant the added expense of manufacturing these die. This is a complex question
and depends on the specific application and also the semiconductor technology. At this time,
there is definitely a premium to be paid for the added performance offered by systems that use
PIM technology.

13. Inventions, or patent disclosures
No inventions were disclosed or patents submitted by the USC DIVA research team.

14. References
[Babb99] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua and S.
Amarasinghe, “Parallelizing Applications Into Silicon,” In Proc. of the IEEE Workshop
on FPGAs for Custom Computing Machines, April, 1999.

[Burger96] D. Burger, J. Goodman and A. Kagi. “Memory Bandwidth Limitations of
Future Microprocessors,” In Proc. of the 23rd International Symposium on Computer
Architecture (ISCA), May, 1996.

[Chame00] J. Chame, M.W. Hall, and J. Shin, “Compiler Transformations for Exploiting
Bandwidth in PIM-Based Systems,” In Proceedings of Solving the Memory Wall Workshop, held
in conjunction with the International Symposium on Computer Architecture, June 2000.

[Chiueh02] Herming Chiueh, Jeffrey Draper, Sumit Mediratta, Jeff Sondeen, The Address
Translation Unit of the Data-Intensive Architecture (DIVA) System, Proceedings of the 28th
European Solid-State Circuit Conference, September 2002.

[Draper02a] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C.
Chen, C. W. Kang, I. Kim, G. Daglikoca, “The Architecture of the DIVA Processing-In-Memory
Chip,” In Proceedings of the International Conference on Supercomputing, June, 2002.

[Draper02b] Jeffrey Draper, Jeff Sondeen, Sumit Mediratta, Ihn Kim, “Implementation of a 32-
bit RISC Processor for the Data-Intensive Architecture Processing-In-Memory Chip,”
Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures, and Processors, July 2002.

[Draper02c] Jeffrey Draper, Jeff Sondeen, Chang Woo Kang, “Implementation of a 256- bit
WideWord Processor for the Data-Intensive Architecture (DIVA) Processing-In- Memory (PIM)
Chip,” Proceedings of the 28th European Solid-State Circuit Conference, September 2002.

[vonEicken92] T. von Eicken, D. Culler, S. C. Goldstein, and K. Schauser, “Active Messages: a
Mechanism for Integrated Communication and Computation”, In Proc. Of the 19th International
Symposium on Computer Architecture, May 1992.

 48

[Elliot99] D. Elliot, M. Stumm, W. Snelgrove, C. Cojocaru, R. McKenzie, “Computational
RAM: Implementing Processors in Memory,” IEEE Design and Test of Computers, January-
March, 1999, pp. 32-41.

[Gokhale95] M. Gokhale, B. Holmes, and K. Iobst, “Processing In Memory: the Terasys
Massively Parallel PIM Array,” IEEE Computer, April 1995, pp. 23-31.

[Hall99] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J.
Brockman, W. Athas, A. Srivastava, J. Shin, J. Park, “Mapping Irregular Computations to DIVA,
a Data-Intensive Architecture,” In Proceedings of SC99, Nov. 1999.

[Hall00] M.W. Hall and C. Steele, “Memory Management in PIM-Based Systems,'' In
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with
Architectural Support for Programming Languages and Operating Systems, Boston, MA, Nov.
2000.

[IBM] IBM Microelectronics, “Embedded DRAM”,
 http://www.chips.ibm.com/products/asics/products/edram.

[Kang99] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik and J. Torrellas,
“FlexRAM: Toward an Advanced Intelligent Memory System,” In Proceedings of the IEEE
International Conference on Computer Design, Oct. 1999.

[Kang00] Chang Woo Kang, Jeff Draper, “A Fast, Simple Router for the Data-Intensive
Architecture (DIVA) System,” Proceedings of the IEEE Midwest Symposium on Circuits and
Systems, August 2000.

[Kogge94] P. Kogge. “The EXECUBE Approach to Massively Parallel Processing,” 1994 Int.
Conf. on Parallel Processing, Chicago, IL, August, 1994.

[Liddicoat02] “High-Performance Arithmetic for Division and the Elementary Functions.”, Ph.D.
Dissertation, Stanford University, January 2002.

[Mitsubishi99] Mitsubishi, “:M32R/D Series: 32-bit RISC Processor, On-chip DRAM,”
www.mitsubishi-chips.com/data/ datasheets/mcus/m32rdgrp.html, May 6, 1999.

[Oskin98] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. “Active Pages: A Model of
Computation for Intelligent Memory”. In Proc. of the 25th International Symposium on
Computer Architecture (ISCA), June, 1998.

[Patterson97] D. Patterson et al., “A Case for Intelligent DRAM: IRAM," IEEE Micro, April
1997.

[RSIM] http://www-ece.rice.edu/~RSIM

[RTEMS] www.rtems.com

 49

[Saulsbury95] A. Saulsbury, T. Wilkinson, J. Carter and A. Landin, “An Argument for Simple
COMA”, In Proc. of the Symposium on High-Performance Computer Architecture, 1995.

[Shin02a] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword
Register Files for Multimedia Extension Architectures.” In Proceedings of the Parallel
Architectures and Compilation Techniques Conference, Sept. 2002,

[Shin02b] J. Shin, J. Chame and M. W. Hall, “A Compiler Algorithm for Exploiting Page-Mode
Memory Accesses in Embedded-DRAM Devices,'' In Proceedings of the Fourth Workshop on
Media and Stream Processors Workshop, held in conjunction with MICRO '02, November, 2002.

[Shin03] J. Shin, J. Chame and M. W. Hall, “Compiler-Controlled Caching in Superword
Register Files for Multimedia Extension Architectures,” Distinguished paper selected from
PACT '02, to appear in Journal of Instruction-Level Parallelism.

 50

Appendix A: DIVA PIM Processor ISA

 51 51

adamsp
Text Box

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125

 126

 127

 128

 129

 130

 131

 132

 133

 134

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

 149

 150

 151

 152

 153

 154

 155

 156

 157

 158

 159

 160

 161

 162

 163

 164

 165

USC Information Sciences DIVA Project Final Report
Appendix B: DIVA PIM Node Architecture

 166

 167

 168

 169

 170

 171

 172

 173

 174

 175

 176

 177

 178

 179

 180

 181

 182

 183

 184

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

 197

 198

 199

 200

 201

 202

 203

 204

 205

 206

 207

 208

 209

 210

 211

 212

 213

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

Appendix C: HiDISC Final Report

 226

 227

 228

 229

 230

 231

 232

 233

 234

 235

 236

 237

 238

 239

 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

 250

 251

 252

IVIemon Inlerface Rin^

Finurt 11: Tho tlui'i-Riiiii rk'\i-DISC Architecture

The fundamental observation which leads to this partitioning comes from the fact

that the types of applications (Memor\ Intensive) we have been targeting are both varied

ill nature and also inherently highly dynamic at execution time. This may mean that

memory access patterns could range from. say. single use of any data element (no

temporal locality), to multiple reuses (higli temporal locality). Consequently, the

bandw idth and types of pipes to and from the memory system must adapt to the changes.

whether they be static or dynamic. We plan on centering the whole architecture around a

higlily reconfigurable Computation Kernel.

The central Computation Kernel is based on an array of snnple processors which

can be dynamically rearranged to meet the demands of the cuirent application. It can

e%en be partitioned into sub-arrays which are allocated to different portions of the

application (or e\ en to different applications as needed). Such a poweitul computation

kernel requires an equally powerful "pipeline" to feed it information to and from the

memory system. Further, the variety of target applications makes the memory accesses

unpredictable. Tliis means that depending on tlie application (or e\en the phase of a

gi\en computation), the amount of memory traffic may fluctuate, and the prefetching

mechanisms must be allowed to adapt to the situation at hand. This also means that

 253

inHtcod of allowing ii single processor for ihc Ci\chc Access rofe Liruf iinocber for the

Cache MiinEtgcmcm role, a pool of identical processing units must be made avEiilable to

the two roles combined. This sharing eni^blcs a highly efllcient dytuimlc paititionlng of

the lesources and their riiEi-fiEiie LLIIOCLLUOJI lo the two outei rings (the Low-level Cache

Access Ring, and ih^' Meniotv liikrtucc Ruig).

Tlie technology UcN'clopt'U for the HiDISC compiler can be espLiiulcU to include

the rearraiiLie iibiliiv of llie mLichHK\ as well LLS ihc pLiciitioning il will undci'L;^ JJI llie

presence of multi-heaUeU applications.

Mfntui^i' liiiiiTjii:*.' Hin^

ricim' 12: Multipk' ^ipplkiiticm shiirin^ of tho rio\i-l)IS(^ mndi'1

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

 286

 287

 288

 289

 290

 291

 292

 293

 294

 295

 296

 297

 298

 299

 300

 301

 302

 303

 304

 305

 306

 307

 308

 309

 310

 311

 312

 313

 314

 315

 316

 317

 318

 319

 320

 321

 322

 323

 324

 325

 326

 327

 328

 329

 330

 331

 332

 333

 334

 335

 336

 337

 338

 339

 340

 341

 342

 343

 344

 345

 346

 347

 348

 349

 350

arc bcinj; lmn'^millod lo Ihc receiver, ihe wnle poinler of ihe

sending I'lF-O dwremenls if (here are IK'» incoming llils from

Iho neijfhK'ring PiKC On IIK' olhor hand. Ihe pi^inler keeps

poinlinj; lolhe ^ame Hil hiilferin ihe ^endin^ F'lF-O if Ihe end-

ing riE'O is simullanei.Hi'^h reeei^ in^i daui Irom ils neighbor

The swileh delemiines Ihe direelion in which a paekel is lo be

fon^arded "Ihe firsl llil of n pnekeL Ihe header, et.'^nlainsroul-

ing infominlion for Ihe suileh fhe header is iinnn encoded

such ihalllh.'number of k^ps:i pnckelis lolmxei^' isindicnied

b\ Ihe numK'rol Ts sel in Ihe header "Ihe header is shiDed
nl each hop so Ihni Ihis \:ilue is decremenled "I herefore. Ihe

switch simp!) inspects Ihe fiisl bilof Ihe roulin^ header lo de-

termine nhich output pi^rt lo request forn^ixenp^nckel Using

a lirst-come-firsl-sened polic>. the output contn.^ller,nrhilmles

fairb between requests fn^-^m Ino E-ll"Oi c^^nlendin^ for usage

of Ihe same output phvsicnl channel If contending; requests

nrri^e in the same clock c\cle lo nn idle output controller, an

aibilmn selection is performed: k'^ne^er. Ihe E"irC> which is

not i^mnted access during this arbitration is guaranteed access

when Ihe current l-'IE"C>compleles based on Ihe lirsl-come-fiist-

sened policy.

Fig. 7. La^Dui

whether the corresponding packet tr^i^els from the (Pel riE'O

lolhe(-) l-'IE"Oor Ihef-I l"ll-'0 "lest xeclor^ are injected on the

Tester terminals indicated in E"igure X. nhichessentialK ser\e

as processing element signals The scenarios are as following:

III IMPLEMENTATION AND PERFORMANCE

The PiR< design nas K'gun b> behavioral modeling in

VHI3I. and o.'^mpiled with S>nops>s Cascade EilXK'M nas
used for routing and placement as n el I as la>oul generation for

a prototype implementation Control blocks nere ssnthesized.

while the short-cut E-I1"0 nas generated using custom lavout

to achieve high density We tested our design at Ihebehav ioral

level, pre-svnihesis level, and p^'si-svnlhesis level with Svnop-

sys. and imnsisior level nith Powennill

The resulting PiRC prototjpelavout isfor the IIP 14b process

available through MOSIS. This process uses C^Oj/im. .*-la>er
metal CMOS technology The PiRC has a die si>:e of 2 70 mm

\ 2.}6 mm and conLnins 75.276 transistors Simple hardv^-are

based on an efhcient routing algorithm allows us to achieve a

clock frequenc> of SOMII/ "Ihe router t.'fxrrateson K'^thclock

edges, leading to a channel bandwidth of 5.l2(ibs. Onlv one

clock is n;^]uired for a Ilit to move from one node to the ne\t.

resulting in a node-lo-node delav of 12.5ns E'igure 7 shov^-s

Ihe lavoul of ihe PiRC. placed and routed with Ihe lloor plan of

E"igure I Ahhough this prototype achieves respectable perfor-

mance, we expect performance lo improve signilicanlh when

we migrate toacurrentl} available embedded [!JR.\M process

using 0.25/im or even OJS/im technology, such as the IBM

SA27-E or TSMC preKKSs.

IV SIMULATION

Fi^e critical scenarios were used to verifv Ihe PiRC design.

Ihe e\temal PiRC connections used for simulalion are shown

in E'igure S Ihis a^nliguration allows sk^l-cut E"ll"Os to

be cascaded together n^ that one E'lrO essenliallv feeds an-

other The header flit of a packet is set in simulation to specify

FJ^ 8^ Rouler CmAgunidai li>rTesdi^

1. Iv^-o messagesmosetiack'to-back without blocking

2. Tv^-o messages move back-to-Kick "I he first message is

blocked until the (-.-) FIFO is full ConsequentK. the

sec^'^nd message is blocked in the f[\rl ETE"0 and starts

fliling it Ihen. the lirst message becomes unblocked and

drains oul .\ssoonas the first message starts moving out.

the sea^nd message follows it along the path

3. Tv^-o messages move back-t^vback. "fhe first message is

blocked until the f .-) ETE'O gels half-U.TIV full, and then

the first message drains out.

4. The first mess:^e is blocked until the(-.-) FIFO fills half-
v^-a>. and when Ihe first message starts draining out of

the I-.-I l"IFO. the second message is injected to thefPe)

FIFO fr^-tm the tester Oue to the -ihort-cul III*) design,

the second message quickl) traverses the tPeJ FIFO to

trail ihe first message.

 351

 352

 353

 354

 355

 356

 357

 358

 359

 360

 361

 362

 363

 364

 365

 366

 367

 368

 369

 370

 371

 372

 373

 374

 375

 376

 377

 378

 379

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

